Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Congenital lung malformations

Abstract

Congenital lung malformations (CLMs) are rare developmental anomalies of the lung, including congenital pulmonary airway malformations (CPAM), bronchopulmonary sequestration, congenital lobar overinflation, bronchogenic cyst and isolated congenital bronchial atresia. CLMs occur in 4 out of 10,000 live births. Postnatal presentation ranges from an asymptomatic infant to respiratory failure. CLMs are typically diagnosed with antenatal ultrasonography and confirmed by chest CT angiography in the first few months of life. Although surgical treatment is the gold standard for symptomatic CLMs, a consensus on asymptomatic cases has not been reached. Resection, either thoracoscopically or through thoracotomy, minimizes the risk of local morbidity, including recurrent infections and pneumothorax, and avoids the risk of malignancies that have been associated with CPAM, bronchopulmonary sequestration and bronchogenic cyst. However, some surgeons suggest expectant management as the incidence of adverse outcomes, including malignancy, remains unknown. In either case, a planned follow-up and a proper transition to adult care are needed. The biological mechanisms through which some CLMs may trigger malignant transformation are under investigation. KRAS has already been confirmed to be somatically mutated in CPAM and other genetic susceptibilities linked to tumour development have been explored. By summarizing current progress in CLM diagnosis, management and molecular understanding we hope to highlight open questions that require urgent attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of CLM.
Fig. 2: Histology of CPAM type 1 with mucinous cell clusters.
Fig. 3: Prenatal CLM diagnosis and management.
Fig. 4: Asymptomatic patient with CPAM becoming symptomatic.
Fig. 5: Algorithm of postnatal diagnosis and surgical management in asymptomatic and symptomatic CLM.

Similar content being viewed by others

References

  1. Panicek, D. M. et al. The continuum of pulmonary developmental anomalies. Radiographics 7, 747–772 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Stocker, J. T., Madewell, J. E. & Drake, R. M. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum. Pathol. 8, 155–171 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Alshamiri, K. M. & Abbod, H. B. Congenital cystic adenomatoid malformation. Int. J. Pediatr. Adolesc. Med. 4, 159–160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gupta, K. et al. Revisiting the histopathologic spectrum of congenital pulmonary developmental disorders. Fetal Pediatr. Pathol. 31, 74–86 (2012).

    Article  PubMed  Google Scholar 

  5. Annunziata, F. et al. Congenital lung malformations: unresolved issues and unanswered questions. Front. Pediatr. 7, 239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laberge, J. M. et al. Outcome of the prenatally diagnosed congenital cystic adenomatoid lung malformation: a Canadian experience. Fetal Diagn. Ther. 16, 178–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Gornall, A. S., Budd, J. L., Draper, E. S., Konje, J. C. & Kurinczuk, J. J. Congenital cystic adenomatoid malformation: accuracy of prenatal diagnosis, prevalence and outcome in a general population. Prenat. Diagn. 23, 997–1002 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Stocker, L. J., Wellesley, D. G., Stanton, M. P., Parasuraman, R. & Howe, D. T. The increasing incidence of foetal echogenic congenital lung malformations: an observational study. Prenat. Diagn. 35, 148–153 (2015).

    Article  PubMed  Google Scholar 

  9. Lau, C. T., Kan, A., Shek, N., Tam, P. & Wong, K. K. Is congenital pulmonary airway malformation really a rare disease? Result of a prospective registry with universal antenatal screening program. Pediatr. Surg. Int. 33, 105–108 (2017). This paper recalculated the incidence of congenital lung malformations.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson, A. J., Sidebotham, E. L., Chetcuti, P. A. J. & Crabbe, D. C. G. Prenatally diagnosed congenital lung malformations — a long-term outcome study. Pediatr. Pulmonol. 53, 1442–1446 (2018).

    Article  PubMed  Google Scholar 

  11. Sfakianaki, A. K. & Copel, J. A. Congenital cystic lesions of the lung: congenital cystic adenomatoid malformation and bronchopulmonary sequestration. Rev. Obstet. Gynecol. 5, 85–93 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Zobel, M., Gologorsky, R., Lee, H. & Vu, L. Congenital lung lesions. Semin. Pediatr. Surg. 28, 150821 (2019).

    Article  PubMed  Google Scholar 

  13. Moorthie, S. et al. Estimating the birth prevalence and pregnancy outcomes of congenital malformations worldwide. J. Community Genet. 9, 387–396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hermelijn, S. M. et al. Associated anomalies in congenital lung abnormalities: a 20-year experience. Neonatology 117, 697–703 (2020).

    Article  PubMed  Google Scholar 

  15. Kunisaki, S. M. et al. Fetal risk stratification and outcomes in children with prenatally diagnosed lung malformations: results from a multi-institutional research collaborative. Ann. Surg. 276, e622–e630 (2022).

    Article  PubMed  Google Scholar 

  16. Kersten, C. M. et al. COllaborative Neonatal Network for the first European CPAM Trial (CONNECT): a study protocol for a randomised controlled trial. BMJ Open 13, e071989 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hartman, G. E. & Shochat, S. J. Primary pulmonary neoplasms of childhood: a review. Ann. Thorac. Surg. 36, 108–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Nasr, A., Himidan, S., Pastor, A. C., Taylor, G. & Kim, P. C. Is congenital cystic adenomatoid malformation a premalignant lesion for pleuropulmonary blastoma? J. Pediatr. Surg. 45, 1086–1089 (2010).

    Article  PubMed  Google Scholar 

  19. Casagrande, A. & Pederiva, F. Association between congenital lung malformations and lung tumors in children and adults: a systematic review. J. Thorac. Oncol. 11, 1837–1845 (2016). This systematic review collected, to our knowledge, for the first time all the paediatric and adult cases of congenital lung malformations associated with lung tumours.

    Article  PubMed  Google Scholar 

  20. Walsh, S., Wood, A. E. & Greally, P. Pleuropulmonary blastoma type I following resection of incidentally found congenital lobar emphysema. Ir. Med. J. 102, 230 (2009).

    CAS  PubMed  Google Scholar 

  21. Bogers, A. J., Hazebroek, F. W., Molenaar, J. & Bos, E. Surgical treatment of congenital bronchopulmonary disease in children. Eur. J. Cardiothorac. Surg. 7, 117–120 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Korol, E. The correlation of carcinoma and congenital cystic emphysema of the lungs; report of ten cases. Dis. Chest 23, 403–411 (1953).

    Article  CAS  PubMed  Google Scholar 

  23. Brcic, L. et al. Pleuropulmonary blastoma type I might arise in congenital pulmonary airway malformation type 4 by acquiring a Dicer 1 mutation. Virchows Arch. 477, 375–382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Messinger, Y. H. et al. Pleuropulmonary blastoma: a report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry. Cancer 121, 276–285 (2015).

    Article  PubMed  Google Scholar 

  25. Rossi, G. et al. MUC5AC, cytokeratin 20 and HER2 expression and K-RAS mutations within mucinogenic growth in congenital pulmonary airway malformations. Histopathology 60, 1133–1143 (2012).

    Article  PubMed  Google Scholar 

  26. Nelson, N. D. et al. Defining the spatial landscape of KRAS mutated congenital pulmonary airway malformations: a distinct entity with a spectrum of histopathologic features. Mod. Pathol. 35, 1870–1881 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hermelijn, S. M. et al. Early KRAS oncogenic driver mutations in nonmucinous tissue of congenital pulmonary airway malformations as an indicator of potential malignant behavior. Hum. Pathol. 103, 95–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Summers, R. J., Shehata, B. M., Bleacher, J. C., Stockwell, C. & Rapkin, L. Mucinous adenocarcinoma of the lung in association with congenital pulmonary airway malformation. J. Pediatr. Surg. 45, 2256–2259 (2010).

    Article  PubMed  Google Scholar 

  29. Cass, D. L. et al. Increased cell proliferation and decreased apoptosis characterize congenital cystic adenomatoid malformation of the lung. J. Pediatr. Surg. 33, 1043–1046 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hsu, J. S. et al. Cancer gene mutations in congenital pulmonary airway malformation patients.ERJ Open Res. 5, 00196-2018 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Patrizi, S., Pederiva, F. & d’Adamo, A. P. Whole-genome methylation study of congenital lung malformations in children. Front. Oncol. 11, 689833 (2021). This study described, to our knowledge, for the first time methylation anomalies in congenital lung malformations in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo, J. et al. PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int. 19, 96 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldstein, B., Trivedi, M. & Speth, R. C. Alterations in gene expression of components of the renin-angiotensin system and its related enzymes in lung cancer. Lung Cancer Int. 2017, 6914976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kunisaki, S. M. Narrative review of congenital lung lesions. Transl. Pediatr. 10, 1418–1431 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Taylor, B., Rice, A., Nicholson, A. G., Hind, M. & Dean, C. H. Mechanism of lung development in the aetiology of adult congenital pulmonary airway malformations. Thorax 75, 1001–1003 (2020).

    Article  PubMed  Google Scholar 

  36. Lezmi, G. et al. Congenital cystic adenomatoid malformations of the lung: diagnosis, treatment, pathophysiological hypothesis [French]. Rev. Pneumol. Clin. 69, 190–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Langston, C. New concepts in the pathology of congenital lung malformations. Semin. Pediatr. Surg. 12, 17–37 (2003).

    Article  PubMed  Google Scholar 

  38. Correia-Pinto, J., Gonzaga, S., Huang, Y. & Rottier, R. Congenital lung lesions — underlying molecular mechanisms. Semin. Pediatr. Surg. 19, 171–179 (2010).

    Article  PubMed  Google Scholar 

  39. Doktor, F., Antounians, L., Lacher, M. & Zani, A. Congenital lung malformations: dysregulated lung developmental processes and altered signaling pathways. Semin. Pediatr. Surg. 31, 151228 (2022).

    Article  PubMed  Google Scholar 

  40. Simonet, W. S. et al. Pulmonary malformation in transgenic mice expressing human keratinocyte growth factor in the lung. Proc. Natl Acad. Sci. USA 92, 12461–12465 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark, J. C. et al. FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L705–L715 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. White, A. C. et al. FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 133, 1507–1517 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Warburton, D. et al. The molecular basis of lung morphogenesis. Mech. Dev. 92, 55–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Leibel, S. L., McVicar, R. N., Winquist, A. M., Niles, W. D. & Snyder, E. Y. Generation of complete multi-cell type lung organoids from human embryonic and patient-specific induced pluripotent stem cells for infectious disease modeling and therapeutics validation. Curr. Protoc. Stem Cell Biol. 54, e118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gonzaga, S. et al. Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung. Am. J. Respir. Cell Mol. Biol. 39, 346–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Elevated Kruppel-like factor 5 expression in spatiotemporal mouse lungs is similar to human congenital cystic adenomatoid malformation of the lungs. J. Int. Med. Res. 46, 2856–2865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guseh, J. S. et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 136, 1751–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J. H. et al. Lack of epithelial PPARγ causes cystic adenomatoid malformations in mouse fetal lung. Biochem. Biophys. Res. Commun. 491, 271–276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stocker, J. T. Congenital pulmonary airway malformation — a new name for and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology 41, 424–458 (2002).

    Google Scholar 

  50. Pogoriler, J., Swarr, D., Kreiger, P., Adzick, N. S. & Peranteau, W. Congenital cystic lung lesions: redefining the natural distribution of subtypes and assessing the risk of malignancy. Am. J. Surg. Pathol. 43, 47–55 (2019).

    Article  PubMed Central  Google Scholar 

  51. Dehner, L. P., Schultz, K. A. P. & Hill, D. A. Congenital pulmonary airway malformations with a reconsideration and current perspective on the stocker classification. Pediatr. Dev. Pathol. 26, 241–249 (2023).

    Article  PubMed  Google Scholar 

  52. Szafranski, P. et al. Phenotypic expansion of TBX4 mutations to include acinar dysplasia of the lungs. Am. J. Med. Genet. A 170, 2440–2444 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Vincent, M. et al. Clinical, histopathological, and molecular diagnostics in lethal lung developmental disorders. Am. J. Respir. Crit. Care Med. 200, 1093–1101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Imai, Y. & Mark, E. J. Cystic adenomatoid change is common to various forms of cystic lung diseases of children: a clinicopathologic analysis of 10 cases with emphasis on tracing the bronchial tree. Arch. Pathol. Lab. Med. 126, 934–940 (2002).

    Article  PubMed  Google Scholar 

  55. Kunisaki, S. M. et al. Bronchial atresia: the hidden pathology within a spectrum of prenatally diagnosed lung masses. J. Pediatr. Surg. 41, 61–65 (2006).

    Article  PubMed  Google Scholar 

  56. Riedlinger, W. F. et al. Bronchial atresia is common to extralobar sequestration, intralobar sequestration, congenital cystic adenomatoid malformation, and lobar emphysema. Pediatr. Dev. Pathol. 9, 361–373 (2006).

    Article  PubMed  Google Scholar 

  57. Swarr, D. T. et al. Novel molecular and phenotypic insights into congenital lung malformations. Am. J. Respir. Crit. Care Med. 197, 1328–1339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dehner, L. P. et al. Type I pleuropulmonary blastoma versus congenital pulmonary airway malformation type IV. Neonatology 111, 76 (2017).

    Article  PubMed  Google Scholar 

  59. MacSweeney, F. et al. An assessment of the expanded classification of congenital cystic adenomatoid malformations and their relationship to malignant transformation. Am. J. Surg. Pathol. 27, 1139–1146 (2003).

    Article  PubMed  Google Scholar 

  60. Dehner, L. P. et al. Pleuropulmonary blastoma: evolution of an entity as an entry into a familial tumor predisposition syndrome. Pediatr. Dev. Pathol. 18, 504–511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Volpe, M. V., Archavachotikul, K., Bhan, I., Lessin, M. S. & Nielsen, H. C. Association of bronchopulmonary sequestration with expression of the homeobox protein Hoxb-5. J. Pediatr. Surg. 35, 1817–1819 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Gabelloni, M., Faggioni, L., Accogli, S., Aringhieri, G. & Neri, E. Pulmonary sequestration: what the radiologist should know. Clin. Imaging 73, 61–72 (2021).

    Article  PubMed  Google Scholar 

  63. Conran, R. M. & Stocker, J. T. Extralobar sequestration with frequently associated congenital cystic adenomatoid malformation, type 2: report of 50 cases. Pediatr. Dev. Pathol. 2, 454–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Cass, D. L. et al. Cystic lung lesions with systemic arterial blood supply: a hybrid of congenital cystic adenomatoid malformation and bronchopulmonary sequestration. J. Pediatr. Surg. 32, 986–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Alamo, L., Vial, Y., Gengler, C. & Meuli, R. Imaging findings of bronchial atresia in fetuses, neonates and infants. Pediatr. Radiol. 46, 383–390 (2016).

    Article  PubMed  Google Scholar 

  66. Kravitz, R. M. Congenital malformations of the lung. Pediatr. Clin. North Am. 41, 453–472 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Ortiz, R. J. et al. Bronchogenic cyst: lessons learned in 20 years of experience at a tertiary pediatric center. J. Pediatr. Surg. https://doi.org/10.1016/j.jpedsurg.2023.06.010 (2023).

    Article  PubMed  Google Scholar 

  68. Morikawa, N. et al. Congenital bronchial atresia in infants and children. J. Pediatr. Surg. 40, 1822–1826 (2005).

    Article  PubMed  Google Scholar 

  69. Kunisaki, S. M. et al. Current operative management of congenital lobar emphysema in children: a report from the Midwest Pediatric Surgery Consortium. J. Pediatr. Surg. 54, 1138–1142 (2019).

    Article  Google Scholar 

  70. Tsai, A. Y. et al. Outcomes after postnatal resection of prenatally diagnosed asymptomatic cystic lung lesions. J. Pediatr. Surg. 43, 513–517 (2008).

    Article  PubMed  Google Scholar 

  71. Wong, A., Vieten, D., Singh, S., Harvey, J. G. & Holland, A. J. Long-term outcome of asymptomatic patients with congenital cystic adenomatoid malformation. Pediatr. Surg. Int. 25, 479–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Lujan, M. et al. Late-onset congenital cystic adenomatoid malformation of the lung. Embryology, clinical symptomatology, diagnostic procedures, therapeutic approach and clinical follow-up. Respiration 69, 148–154 (2002).

    Article  PubMed  Google Scholar 

  73. Ng, C., Stanwell, J., Burge, D. M. & Stanton, M. P. Conservative management of antenatally diagnosed cystic lung malformations. Arch. Dis. Child. 99, 432–437 (2014).

    Article  PubMed  Google Scholar 

  74. Criss, C. N. et al. Asymptomatic congenital lung malformations: Is nonoperative management a viable alternative? J. Pediatr. Surg. 53, 1092–1097 (2018).

    Article  PubMed  Google Scholar 

  75. Adzick, N. S. et al. Fetal cystic adenomatoid malformation: prenatal diagnosis and natural history. J. Pediatr. Surg. 20, 483–488 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Kunisaki, S. M. et al. Large fetal congenital cystic adenomatoid malformations: growth trends and patient survival. J. Pediatr. Surg. 42, 404–410 (2007).

    Article  PubMed  Google Scholar 

  77. Macardle, C. A. et al. Surveillance of fetal lung lesions using the congenital pulmonary airway malformation volume ratio: natural history and outcomes. Prenat. Diagn. 36, 282–289 (2016).

    Article  PubMed  Google Scholar 

  78. Monni, G. et al. Prenatal ultrasound diagnosis of congenital cystic adenomatoid malformation of the lung: a report of 26 cases and review of the literature. Ultrasound Obstet. Gynecol. 16, 159–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Achiron, R., Gindes, L., Zalel, Y., Lipitz, S. & Weisz, B. Three- and four-dimensional ultrasound: new methods for evaluating fetal thoracic anomalies. Ultrasound Obstet. Gynecol. 32, 36–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Priest, J. R., Williams, G. M., Hill, D. A., Dehner, L. P. & Jaffe, A. Pulmonary cysts in early childhood and the risk of malignancy. Pediatr. Pulmonol. 44, 14–30 (2009).

    Article  PubMed  Google Scholar 

  81. Downard, C. D. et al. Treatment of congenital pulmonary airway malformations: a systematic review from the APSA outcomes and evidence based practice committee. Pediatr. Surg. Int. 33, 939–953 (2017).

    Article  PubMed  Google Scholar 

  82. Perlman, S. et al. The added value of f-TAPSE in the surveillance of pregnancies complicated by fetal and placental tumors. Prenat. Diagn. 37, 788–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Girsen, A. I. et al. Prediction of neonatal respiratory distress in pregnancies complicated by fetal lung masses. Prenat. Diagn. 37, 266–272 (2017).

    Article  PubMed  Google Scholar 

  84. Crombleholme, T. M. et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J. Pediatr. Surg. 37, 331–338 (2002).

    Article  PubMed  Google Scholar 

  85. David, M., Lamas-Pinheiro, R. & Henriques-Coelho, T. Prenatal and postnatal management of congenital pulmonary airway malformation. Neonatology 110, 101–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kane, S. C., Ancona, E., Reidy, K. L. & Palma-Dias, R. The utility of the congenital pulmonary airway malformation-volume ratio in the assessment of fetal echogenic lung lesions: a systematic review. Fetal Diagn. Ther. 47, 171–181 (2020).

    Article  PubMed  Google Scholar 

  87. Delacourt, C. et al. Predicting the risk of respiratory distress in newborns with congenital pulmonary malformations.Eur. Respir. J. 59, 2100949 (2022).

    Article  PubMed  Google Scholar 

  88. Gerall, C. et al. Prenatal ultrasound- and MRI-based imaging predictors of respiratory symptoms at birth for congenital lung malformations. J. Pediatr. Surg. 58, 420–426 (2023).

    Article  PubMed  Google Scholar 

  89. Peters, N. C. J. et al. Prediction of postnatal outcome in fetuses with congenital lung malformation: 2-year follow-up study. Ultrasound Obstet. Gynecol. 58, 428–438 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Ehrenberg-Buchner, S. et al. Fetal lung lesions: can we start to breathe easier? Am. J. Obstet. Gynecol. 208, 151.e1-7 (2013).

    Article  PubMed  Google Scholar 

  91. Ruchonnet-Metrailler, I. et al. Neonatal outcomes of prenatally diagnosed congenital pulmonary malformations. Pediatrics 133, e1285-91 (2014).

    Article  PubMed  Google Scholar 

  92. Mon, R. A. et al. Diagnostic accuracy of imaging studies in congenital lung malformations. Arch. Dis. Child. Fetal Neonatal Ed. 104, F372–F377 (2019).

    PubMed  Google Scholar 

  93. Newman, B. Magnetic resonance imaging for congenital lung malformations. Pediatr. Radiol. 52, 312–322 (2022).

    Article  PubMed  Google Scholar 

  94. Wong, K. K. Y., Flake, A. W., Tibboel, D., Rottier, R. J. & Tam, P. K. H. Congenital pulmonary airway malformation: advances and controversies. Lancet Child Adolesc. Health 2, 290–297 (2018). This paper highlighted the open controversies on the management of congenital lung malformations that are still unresolved.

    Article  PubMed  Google Scholar 

  95. Tivnan, P., Winant, A. J., Epelman, M. & Lee, E. Y. Pediatric congenital lung malformations: imaging guidelines and recommendations. Radiol. Clin. North Am. 60, 41–54 (2022).

    Article  PubMed  Google Scholar 

  96. Style, C. C. et al. Accuracy of prenatal and postnatal imaging for management of congenital lung malformations. J. Pediatr. Surg. 55, 844–847 (2020).

    Article  PubMed  Google Scholar 

  97. Narayan, R. R. et al. Predicting pathology from imaging in children undergoing resection of congenital lung lesions. J. Surg. Res. 236, 68–73 (2019).

    Article  PubMed  Google Scholar 

  98. Cheeney, S. H. E., Maloney, E. & Iyer, R. S. Safety considerations related to intravenous contrast agents in pediatric imaging. Pediatr. Radiol. https://doi.org/10.1007/s00247-022-05470-z (2022).

    Article  PubMed  Google Scholar 

  99. Hermelijn, S. M. et al. A clinical guideline for structured assessment of CT-imaging in congenital lung abnormalities. Paediatr. Respir. Rev. 37, 80–88 (2021).

    PubMed  Google Scholar 

  100. Kim, W. S. et al. Congenital cystic adenomatoid malformation of the lung: CT-pathologic correlation. Am. J. Roentgenol. 168, 47–53 (1997).

    Article  CAS  Google Scholar 

  101. Parikh, D. H. & Rasiah, S. V. Congenital lung lesions: postnatal management and outcome. Semin. Pediatr. Surg. 24, 160–167 (2015).

    Article  PubMed  Google Scholar 

  102. Calvert, J. K. & Lakhoo, K. Antenatally suspected congenital cystic adenomatoid malformation of the lung: postnatal investigation and timing of surgery. J. Pediatr. Surg. 42, 411–414 (2007).

    Article  PubMed  Google Scholar 

  103. Sauvat, F., Michel, J. L., Benachi, A., Emond, S. & Revillon, Y. Management of asymptomatic neonatal cystic adenomatoid malformations. J. Pediatr. Surg. 38, 548–552 (2003).

    Article  PubMed  Google Scholar 

  104. El-Ali, A. M., Strubel, N. A. & Lala, S. V. Congenital lung lesions: a radiographic pattern approach. Pediatr. Radiol. 52, 622–636 (2022).

    Article  PubMed  Google Scholar 

  105. Merli, L. et al. Congenital lung malformations: a novel application for lung ultrasound? J. Ultrasound 24, 349–353 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Quercia, M., Panza, R., Calderoni, G., Di Mauro, A. & Laforgia, N. Lung ultrasound: a new tool in the management of congenital lung malformation. Am. J. Perinatol. 36, S99–S105 (2019).

    Article  PubMed  Google Scholar 

  107. Kellenberger, C. J. et al. Structural and perfusion magnetic resonance imaging of congenital lung malformations. Pediatr. Radiol. 50, 1083–1094 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ciet, P. & Litmanovich, D. E. MR safety issues particular to women. Magn. Reson. Imaging Clin. N. Am. 23, 59–67 (2015).

    Article  PubMed  Google Scholar 

  109. Elders, B. et al. Congenital lung abnormalities on magnetic resonance imaging: the CLAM study. Eur. Radiol. https://doi.org/10.1007/s00330-023-09458-7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fowler, D. J. & Gould, S. J. The pathology of congenital lung lesions. Semin. Pediatr. Surg. 24, 176–182 (2015).

    Article  PubMed  Google Scholar 

  111. Desai, S. et al. Secondary vascular changes in pulmonary sequestrations. Histopathology 57, 121–127 (2010).

    Article  PubMed  Google Scholar 

  112. Mukhtar, S. & Trovela, D. A. V. Congenital Lobar Emphysema (StatPearls Publishing, 2022).

  113. Schuster, S. R., Harris, G. B., Williams, A., Kirkpatrick, J. & Reid, L. Bronchial atresia: a recognizable entity in the pediatric age group. J. Pediatr. Surg. 13, 682–689 (1978).

    Article  CAS  PubMed  Google Scholar 

  114. Peranteau, W. H. et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn. Ther. 22, 365–371 (2007).

    Article  PubMed  Google Scholar 

  115. Muntean, A. et al. The long-term outcome following thoraco-amniotic shunting for congenital lung malformations. J. Pediatr. Surg. 58, 213–217 (2023).

    Article  PubMed  Google Scholar 

  116. Rosenblat, O. et al. In-utero treatment of prenatal thoracic abnormalities by thoraco-amniotic shunts, short and long term neuro developmental outcome: a single center experience. J. Pediatr. Surg. 57, 364–368 (2022).

    Article  PubMed  Google Scholar 

  117. Morris, L. M., Lim, F. Y., Livingston, J. C., Polzin, W. J. & Crombleholme, T. M. High-risk fetal congenital pulmonary airway malformations have a variable response to steroids. J. Pediatr. Surg. 44, 60–65 (2009).

    Article  PubMed  Google Scholar 

  118. Kunisaki, S. M. & Jennings, R. W. Fetal surgery. J. Intensive Care Med. 23, 33–51 (2008).

    Article  PubMed  Google Scholar 

  119. Bratu, I. et al. The multiple facets of pulmonary sequestration. J. Pediatr. Surg. 36, 784–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. da Silva, O. P., Ramanan, R., Romano, W., Bocking, A. & Evans, M. Nonimmune hydrops fetalis, pulmonary sequestration, and favorable neonatal outcome. Obstet. Gynecol. 88, 681–683 (1996).

    Article  PubMed  Google Scholar 

  121. Litwinska, M. et al. Management options for fetal bronchopulmonary sequestration. J. Clin. Med. 11, 1724 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mallmann, M. R. et al. Bronchopulmonary sequestration with massive pleural effusion: pleuroamniotic shunting vs intrafetal vascular laser ablation. Ultrasound Obstet. Gynecol. 44, 441–446 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Rothenberg, S. S. First decade’s experience with thoracoscopic lobectomy in infants and children. J. Pediatr. Surg. 43, 40–44 (2008).

    Article  PubMed  Google Scholar 

  124. Rothenberg, S. S. Thoracoscopic lobectomy in infants and children. J. Laparoendosc. Adv. Surg. Tech. A 31, 1157–1161 (2021). This paper comprehensively describes the technique of thoracoscopic lobectomy as well as the preoperative and postoperative care.

    Article  PubMed  Google Scholar 

  125. Rothenberg, S. S. et al. Two decades of experience with thoracoscopic lobectomy in infants and children: standardizing techniques for advanced thoracoscopic surgery. J. Laparoendosc. Adv. Surg. Tech. A 25, 423–428 (2015).

    Article  PubMed  Google Scholar 

  126. Cano, I., Anton-Pacheco, J. L., Garcia, A. & Rothenberg, S. Video-assisted thoracoscopic lobectomy in infants. Eur. J. Cardiothorac. Surg. 29, 997–1000 (2006).

    Article  PubMed  Google Scholar 

  127. Bonnard, A. Thoracoscopic lobectomy for congenital pulmonary airway malformation: where are we in 2019? Eur. J. Pediatr. Surg. 30, 146–149 (2020).

    Article  PubMed  Google Scholar 

  128. Rothenberg, S. S. et al. Thoracoscopic lobectomy in infants less than 10 kg with prenatally diagnosed cystic lung disease. J. Laparoendosc. Adv. Surg. Tech. A 21, 181–184 (2011).

    Article  PubMed  Google Scholar 

  129. Lawal, T. A., Gosemann, J. H., Kuebler, J. F., Gluer, S. & Ure, B. M. Thoracoscopy versus thoracotomy improves midterm musculoskeletal status and cosmesis in infants and children. Ann. Thorac. Surg. 87, 224–228 (2009).

    Article  PubMed  Google Scholar 

  130. Adams, S. et al. Does thoracoscopy have advantages over open surgery for asymptomatic congenital lung malformations? An analysis of 1626 resections. J. Pediatr. Surg. 52, 247–251 (2017).

    Article  PubMed  Google Scholar 

  131. Laberge, J. M., Puligandla, P. & Flageole, H. Asymptomatic congenital lung malformations. Semin. Pediatr. Surg. 14, 16–33 (2005).

    Article  PubMed  Google Scholar 

  132. Kapralik, J., Wayne, C., Chan, E. & Nasr, A. Surgical versus conservative management of congenital pulmonary airway malformation in children: a systematic review and meta-analysis. J. Pediatr. Surg. 51, 508–512 (2016).

    Article  PubMed  Google Scholar 

  133. Duron, V. et al. Asymptomatic congenital lung malformations: timing of resection does not affect adverse surgical outcomes. Front. Pediatr. 8, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Esposito, C. et al. Thoracoscopic management of pediatric patients with congenital lung malformations: results of a European Multicenter Survey. J. Laparoendosc. Adv. Surg. Tech. A 31, 355–362 (2021).

    Article  PubMed  Google Scholar 

  135. Engall, N., Sethuraman, C., Wilkinson, D. J., Lansdale, N. & Peters, R. T. Does timing of resection influence the presence of inflammation within congenital lung malformations? Eur. J. Pediatr. Surg. 33, 81–84 (2023).

    Article  PubMed  Google Scholar 

  136. Elhattab, A. et al. Thoracoscopic surgery for congenital lung malformations: does previous infection really matter? J. Pediatr. Surg. 56, 1982–1987 (2021).

    Article  PubMed  Google Scholar 

  137. Garrett-Cox, R., MacKinlay, G., Munro, F. & Aslam, A. Early experience of pediatric thoracoscopic lobectomy in the UK. J. Laparoendosc. Adv. Surg. Tech. A 18, 457–459 (2008).

    Article  PubMed  Google Scholar 

  138. Mei-Zahav, M., Konen, O., Manson, D. & Langer, J. C. Is congenital lobar emphysema a surgical disease? J. Pediatr. Surg. 41, 1058–1061 (2006).

    Article  PubMed  Google Scholar 

  139. Aziz, D. et al. Perinatally diagnosed asymptomatic congenital cystic adenomatoid malformation: to resect or not? J. Pediatr. Surg. 39, 329–334 (2004).

    Article  PubMed  Google Scholar 

  140. Chetcuti, P. A. & Crabbe, D. C. CAM lungs: the conservative approach. Arch. Dis. Child. Fetal Neonatal Ed. 91, F463–F464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hall, N. J., Chiu, P. P. & Langer, J. C. Morbidity after elective resection of prenatally diagnosed asymptomatic congenital pulmonary airway malformations. Pediatr. Pulmonol. 51, 525–530 (2016).

    Article  PubMed  Google Scholar 

  142. Aspirot, A. et al. A contemporary evaluation of surgical outcome in neonates and infants undergoing lung resection. J. Pediatr. Surg. 43, 508–512 (2008).

    Article  PubMed  Google Scholar 

  143. Rahman, N. & Lakhoo, K. Comparison between open and thoracoscopic resection of congenital lung lesions. J. Pediatr. Surg. 44, 333–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Bunduki, V. et al. Prognostic factors associated with congenital cystic adenomatoid malformation of the lung. Prenat. Diagn. 20, 459–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Robson, V. K., Shieh, H. F., Wilson, J. M. & Buchmiller, T. L. Non-operative management of extralobar pulmonary sequestration: a safe alternative to resection? Pediatr. Surg. Int. 36, 325–331 (2020).

    Article  PubMed  Google Scholar 

  146. Cook, J., Chitty, L. S., De Coppi, P., Ashworth, M. & Wallis, C. The natural history of prenatally diagnosed congenital cystic lung lesions: long-term follow-up of 119 cases. Arch. Dis. Child. 102, 798–803 (2017).

    Article  PubMed  Google Scholar 

  147. Karlsson, M., Conner, P., Ehren, H., Bitkover, C. & Burgos, C. M. The natural history of prenatally diagnosed congenital pulmonary airway malformations and bronchopulmonary sequestrations. J. Pediatr. Surg. 57, 282–287 (2022).

    Article  PubMed  Google Scholar 

  148. Dossche, L. W. J. et al. Long-term neurodevelopment in children with resected congenital lung abnormalities. Eur. J. Pediatr. https://doi.org/10.1007/s00431-023-05054-5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Duarte, J. C., Ferreira, P. G., Alfaro, T. M., Carvalho, L. & Ferreira, A. J. Cystic adenomatoid pulmonary malformation in adults: a retrospective study in a tertiary university hospital. Rev. Port. Pneumol. 23, 109–110 (2017).

    CAS  PubMed  Google Scholar 

  150. Gorospe, L. et al. Cystic adenomatoid malformation of the lung in adult patients: clinicoradiological features and management. Clin. Imaging 40, 517–522 (2016).

    Article  PubMed  Google Scholar 

  151. Hamanaka, R., Yagasaki, H., Kohno, M., Masuda, R. & Iwazaki, M. Congenital cystic adenomatoid malformation in adults: report of a case presenting with a recurrent pneumothorax and a literature review of 60 cases. Respir. Med. Case Rep. 26, 328–332 (2019).

    PubMed  Google Scholar 

  152. Polaczek, M. et al. Clinical presentation and characteristics of 25 adult cases of pulmonary sequestration. J. Thorac. Dis. 9, 762–767 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Berrington de Gonzalez, A., Pasqual, E. & Veiga, L. Epidemiological studies of CT scans and cancer risk: the state of the science.Br. J. Radiol. 94, 20210471 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Eber, E. Adult outcome of congenital lower respiratory tract malformations. Swiss Med. Wkly 136, 233–240 (2006).

    PubMed  Google Scholar 

  155. Davenport, M. & Eber, E. Long term respiratory outcomes of congenital thoracic malformations. Semin. Fetal Neonatal Med. 17, 99–104 (2012).

    Article  PubMed  Google Scholar 

  156. Hall, N. J. & Stanton, M. P. Long-term outcomes of congenital lung malformations. Semin. Pediatr. Surg. 26, 311–316 (2017).

    Article  PubMed  Google Scholar 

  157. Spoel, M. et al. Lung function of infants with congenital lung lesions in the first year of life. Neonatology 103, 60–66 (2013).

    Article  PubMed  Google Scholar 

  158. Hijkoop, A. et al. Lung function, exercise tolerance, and physical growth of children with congenital lung malformations at 8 years of age. Pediatr. Pulmonol. 54, 1326–1334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Calzolari, F. et al. Outcome of infants operated on for congenital pulmonary malformations. Pediatr. Pulmonol. 51, 1367–1372 (2016).

    Article  PubMed  Google Scholar 

  160. Markel, M. et al. Congenital lung malformation patients experience respiratory infections after resection: a population-based cohort study. J. Pediatr. Surg. 57, 829–832 (2022).

    Article  PubMed  Google Scholar 

  161. Barikbin, P. et al. Postnatal lung function in congenital cystic adenomatoid malformation of the lung. Ann. Thorac. Surg. 99, 1164–1169 (2015).

    Article  PubMed  Google Scholar 

  162. Huang, J. X., Hong, S. M., Hong, J. J., Chen, Q. & Cao, H. Medium-term pulmonary function test after thoracoscopic lobectomy and segmentectomy for congenital lung malformation: a comparative study with normal control. Front. Pediatr. 9, 755328 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Dincel, A. et al. Long-term respiratory outcomes of post-op congenital lung malformations. Pediatr. Int. 63, 704–709 (2021).

    Article  PubMed  Google Scholar 

  164. Tocchioni, F. et al. Long-term lung function in children following lobectomy for congenital lung malformation. J. Pediatr. Surg. 52, 1891–1897 (2017).

    Article  PubMed  Google Scholar 

  165. Willers, C. et al. School-age structural and functional MRI and lung function in children following lung resection for congenital lung malformation in infancy. Pediatr. Radiol. 52, 1255–1265 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lau, C. T., Wong, K. K. Y. & Tam, P. Medium term pulmonary function test after thoracoscopic lobectomy for congenital pulmonary airway malformation: a comparative study with normal control. J. Laparoendosc. Adv. Surg. Tech. A 28, 595–598 (2018).

    Article  PubMed  Google Scholar 

  167. Albanese, C. T. & Rothenberg, S. S. Experience with 144 consecutive pediatric thoracoscopic lobectomies. J. Laparoendosc. Adv. Surg. Tech. A 17, 339–341 (2007).

    Article  PubMed  Google Scholar 

  168. Lam, F. K. F., Lau, C. T., Yu, M. O. & Wong, K. K. Y. Comparison of thoracoscopy vs. thoracotomy on musculoskeletal outcomes of children with congenital pulmonary airway malformation (CPAM). J. Pediatr. Surg. 56, 1732–1736 (2021).

    Article  PubMed  Google Scholar 

  169. Sadeghi, A. H. et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 7, 309–321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bakhuis, W. et al. Preoperative visualization of congenital lung abnormalities: hybridizing artificial intelligence and virtual reality.Eur. J. Cardiothorac. Surg. 63, ezad014 (2022).

    Article  PubMed  Google Scholar 

  171. Sumner, T. E., Phelps, C. R. 2nd, Crowe, J. E., Poolos, S. P. & Shaffner, L. D. Pulmonary blastoma in a child. Am. J. Roentgenol. 133, 147–148 (1979).

    Article  CAS  Google Scholar 

  172. Papagiannopoulos, K. A., Sheppard, M., Bush, A. P. & Goldstraw, P. Pleuropulmonary blastoma: is prophylactic resection of congenital lung cysts effective? Ann. Thorac. Surg. 72, 604–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Veronesi, G. et al. Report on first international workshop on robotic surgery in thoracic oncology. Front. Oncol. 6, 214 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ballouhey, Q. et al. A comparison of robotic surgery in children weighing above and below 15.0 kg: size does not affect surgery success. Surg. Endosc. 29, 2643–2650 (2015). This paper gives an outlook on the application of robotic surgery in patients with congenital lung malformations.

    Article  PubMed  Google Scholar 

  175. Durand, M. et al. Robotic lobectomy in children with severe bronchiectasis: a worthwhile new technology. J. Pediatr. Surg. 56, 1606–1610 (2021).

    Article  PubMed  Google Scholar 

  176. Ballouhey, Q. et al. Assessment of paediatric thoracic robotic surgery. Interact. Cardiovasc. Thorac. Surg. 20, 300–303 (2015).

    Article  PubMed  Google Scholar 

  177. Meehan, J. J., Phearman, L. & Sandler, A. Robotic pulmonary resections in children: series report and introduction of a new robotic instrument. J. Laparoendosc. Adv. Surg. Tech. A 18, 293–295 (2008).

    Article  PubMed  Google Scholar 

  178. Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Leblanc, C. et al. Congenital pulmonary airway malformations: state-of-the-art review for pediatrician’s use. Eur. J. Pediatr. 176, 1559–1571 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Mullassery, D. & Smith, N. P. Lung development. Semin. Pediatr. Surg. 24, 152–155 (2015).

    Article  PubMed  Google Scholar 

  181. Morrisey, E. E. & Hogan, B. L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Prince, L. S. FGF10 and human lung disease across the life spectrum. Front. Genet. 9, 517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Harris, K. S., Zhang, Z., McManus, M. T., Harfe, B. D. & Sun, X. Dicer function is essential for lung epithelium morphogenesis. Proc. Natl Acad. Sci. USA 103, 2208–2213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yuan, T., Volckaert, T., Chanda, D., Thannickal, V. J. & De Langhe, S. P. Fgf10 signaling in lung development, homeostasis, disease, and repair after injury. Front. Genet. 9, 418 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Danopoulos, S. et al. Discordant roles for FGF ligands in lung branching morphogenesis between human and mouse. J. Pathol. 247, 254–265 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Otto-Verberne, C. J., Ten Have-Opbroek, A. A., Balkema, J. J. & Franken, C. Detection of the type II cell or its precursor before week 20 of human gestation, using antibodies against surfactant-associated proteins. Anat. Embryol. 178, 29–39 (1988).

    Article  CAS  Google Scholar 

  189. Liggins, G. C. The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6, 141–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  190. Jobe, A. H. & Ikegami, M. Lung development and function in preterm infants in the surfactant treatment era. Annu. Rev. Physiol. 62, 825–846 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.P.); Epidemiology (F.P. and J.M.S.); Mechanism/pathophysiology (K.K.Y.W., A.P.D. and F.P.); Diagnosis, screening and prevention (R.A., P.C., F.P. and J.v.d.T.); Management (N.H., J.M.S., S.S.R. and F.P.); Quality of life (H.I.); Outlook (F.P.). All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Federica Pederiva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks M. Davenport, A. W. Flake, S. Kunisaki, G. B. Mychaliska and N. Usui for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acinar dysplasia

A rare malformation characterized by growth arrest of the lower respiratory tract and complete absence of gas-exchanging units, resulting in critical respiratory insufficiency at birth.

Acinar-like tissue

A tissue composed of polarized epithelial cells rich in rough endoplasmic reticulum and characterized by an abundance of secretory zymogen granules.

Channels of Lambert

Microscopic collateral airways between the distal bronchiolar tree and adjacent alveoli.

Congenital anomalies

Structural or functional anomalies occurring during intrauterine life and affecting an estimated 6% of global live births (WHO definition).

Congenital diaphragmatic hernia

A defect in the diaphragm causing the herniation of abdominal contents into the thoracic cavity, resulting in lung hypoplasia and altered pulmonary vascular development.

Epithelial–mesenchymal interaction

A series of programmed, sequential and reciprocal communications between the epithelium and the mesenchyme, with its heterotypic cell population, that result in the differentiation of one or both cell populations.

EXIT-to-resection

In the EXIT-to-resection procedure, a hysterotomy is performed to exteriorize the fetal head and torso enabling orotracheal intubation and placement of peripheral IV; the lung malformation can be resected while the fetus is still on placental support34.

Foregut duplication cysts

Benign developmental anomalies that contain foregut derivatives.

Hydrops

Abnormal interstitial fluid collection in two or more compartments of the fetal body.

Lung compliance

A measure of the expansion of the lung.

Mediastinal shift

The deviation of mediastinal structures towards one side of the chest cavity.

Oesophageal duplication

Separate masses along or in continuity with the native oesophagus.

Polyhydramnios

A condition that occurs when too much amniotic fluid builds up during pregnancy.

Pores of Kohn

Small communications between adjacent pulmonary alveoli that provide a collateral pathway for aeration.

Thoraco-amniotic shunt

A shunt that drains fluid from the lung into the amniotic sac to treat pleural effusion, for example, in congenital pulmonary airway malformations.

Tidal volumes

The amount of air that moves in or out of the lungs with each respiratory cycle.

Tricuspid annular plane systole excursion

A scoring system used with non-invasive Doppler echocardiography to determine right ventricular function.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pederiva, F., Rothenberg, S.S., Hall, N. et al. Congenital lung malformations. Nat Rev Dis Primers 9, 60 (2023). https://doi.org/10.1038/s41572-023-00470-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00470-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing