Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modern pulmonary imaging of bronchopulmonary dysplasia

Abstract

Bronchopulmonary dysplasia (BPD) is a complex and serious cardiopulmonary morbidity in infants who are born preterm. Despite advances in clinical care, BPD remains a significant source of morbidity and mortality, due in large part to the increased survival of extremely preterm infants. There are few strong early prognostic indicators of BPD or its later outcomes, and evidence for the usage and timing of various interventions is minimal. As a result, clinical management is often imprecise. In this review, we highlight cutting-edge methods and findings from recent pulmonary imaging research that have high translational value. Further, we discuss the potential role that various radiological modalities may play in early risk stratification for development of BPD and in guiding treatment strategies of BPD when employed in varying severities and time-points throughout the neonatal disease course.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical imaging of a patient with severe BPD and born extremely preterm (24 weeks gestation), acquired at ~41 weeks corrected gestational age.
Fig. 2: Lung ultrasound in B-mode.
Fig. 3: Comparison of slice-matched chest CT (left) and UTE MRI (right) in a neonatal patient with severe BPD.
Fig. 4: Top: axial views of 3D respiratory‐gated ultrashort echo-time (UTE) MRI in a neonate with tracheomalacia.
Fig. 5: Hyperpolarized 3He gas ventilation MRI in a 2-month-old preterm infant.
Fig. 6: Potential role of pulmonary imaging for preterm infants during their NICU course.

Similar content being viewed by others

References

  1. Prayle A, Rosenow T. Looking under the bonnet of bronchopulmonary dysplasia with MRI. Thorax. 2020;75:100.

    Article  PubMed  Google Scholar 

  2. Raju TNK, Buist AS, Blaisdell CJ, Moxey-Mims M, Saigal S. Adults born preterm: a review of general health and system-specific outcomes. Acta Paediatr. 2017;106:1409–37.

    Article  PubMed  Google Scholar 

  3. Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2011;23:167–72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.

  5. Jensen EA, Wright CJ. Bronchopulmonary dysplasia: the ongoing search for one definition to rule them all. J Pediatr. 2018;197:8–10.

  6. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thunqvist P, Gustafsson P, Norman M, Wickman M, Hallberg J. Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50:978–86.

    Article  PubMed  Google Scholar 

  8. Pryhuber GS. Renewed promise of nonionizing radiation imaging for chronic lung disease in preterm infants. Am J Respir Crit Care Med. 2018;198:1248–9.

    Article  PubMed  Google Scholar 

  9. Northway WHJ, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.

    Article  PubMed  Google Scholar 

  10. Ochiai M, Hikino S, Yabuuchi H, Nakayama H, Sato K, Ohga S, et al. A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr. 2008;152:90–5.

    Article  PubMed  Google Scholar 

  11. Spielberg DR, Walkup LL, Stein JM, Crotty EJ, Rattan MS, Hossain MM, et al. Quantitative CT scans of lung parenchymal pathology in premature infants ages 0–6 years. Pediatr Pulmonol. 2018;53:316–23.

    Article  PubMed  Google Scholar 

  12. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167:700–7. http://www.ncbi.nlm.nih.gov/pubmed/23754213.

  13. Toce SS, Farrell PM, Leavitt LA, Samuels DP, Edwards DK. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984;138:581–5.

    CAS  PubMed  Google Scholar 

  14. Arai H, Ito M, Ito T, Ota S, Takahashi T. Bubbly and cystic appearance on chest radiograph of extremely preterm infants with bronchopulmonary dysplasia is associated with wheezing disorder. Acta Paediatr. 2020;109:711–9.

    Article  PubMed  Google Scholar 

  15. Luo H-J, Wang L-Y, Chen P-S, Hsieh W-S, Hsu C-H, Peng S, et al. Neonatal respiratory status predicts longitudinal respiratory health outcomes in preterm infants. Pediatr Pulmonol. 2019;54:814–21.

    Article  PubMed  Google Scholar 

  16. Gonzalez J, Marín M, Sánchez-Salcedo P, Zulueta JJ. Lung cancer screening in patients with chronic obstructive pulmonary disease. Ann Transl Med. 2016;4:160.

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Mastrigt E, Kakar E, Ciet P, den Dekker HT, Joosten KF, Kalkman P, et al. Structural and functional ventilatory impairment in infants with severe bronchopulmonary dysplasia. Pediatr Pulmonol. 2017;52:1029–37.

    Article  PubMed  Google Scholar 

  18. Salito C, Barazzetti L, Woods JC, Aliverti A. Heterogeneity of specific gas volume changes: a new tool to plan lung volume reduction in COPD. Chest. 2014;146:1554–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pennati F, Salito C, Roach D, Clancy JP, Woods J, Aliverti A. Regional ventilation in infants quantified by multi-volume high resolution computed tomography (HRCT) and multi-volume proton magnetic resonance imaging (MRI). Eur Respir J. 2015;46:OA2949. http://erj.ersjournals.com/content/46/suppl_59/OA2949.abstract.

  20. Sun J, Zhang Q, Hu D, Shen Y, Yang H, Chen C, et al. Feasibility study of using one-tenth mSv radiation dose in young children chest CT with 80 kVp and model-based iterative reconstruction. Sci Rep. 2019;9:12481.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim HJ, Yoo S-Y, Jeon TY, Kim JH. Model-based iterative reconstruction in ultra-low-dose pediatric chest CT: comparison with adaptive statistical iterative reconstruction. Clin Imaging. 2016;40:1018–22.

    Article  PubMed  Google Scholar 

  22. van Mastrigt E, Logie K, Ciet P, Reiss IKM, Duijts L, Pijnenburg MW, et al. Lung CT imaging in patients with bronchopulmonary dysplasia: a systematic review. Pediatr Pulmonol. 2016;51:975–86.

    Article  PubMed  Google Scholar 

  23. Miller LE, Stoller JZ, Fraga MV. Point-of-care ultrasound in the neonatal ICU. Curr Opin Pediatr. 2020;32:216–27.

    Article  PubMed  Google Scholar 

  24. Safarulla A, Kuhn W, Lyon M, Etheridge RJ, Stansfield B, Best G, et al. Rapid assessment of the neonate with sonography (RANS) scan. J Ultrasound Med. 2019;38:1599–609.

    Article  PubMed  Google Scholar 

  25. Piastra M, Yousef N, Brat R, Manzoni P, Mokhtari M, De Luca D. Lung ultrasound findings in meconium aspiration syndrome. Early Hum Dev. 2014;90:S41–3.

    Article  PubMed  Google Scholar 

  26. De Martino L, Yousef N, Ben-Ammar R, Raimondi F, Shankar-Aguilera S, De Luca D. Lung ultrasound score predicts surfactant need in extremely preterm neonates. Pediatrics. 2018;142:e20180463.

    Article  PubMed  Google Scholar 

  27. Alonso-Ojembarrena A, Lubián-López SP. Lung ultrasound score as early predictor of bronchopulmonary dysplasia in very low birth weight infants. Pediatr Pulmonol. 2019;54:1404–9.

    Article  PubMed  Google Scholar 

  28. Raimondi F, Yousef N, Rodriguez Fanjul J, De Luca D, Corsini I, Shankar-Aguilera S, et al. A multicenter lung ultrasound study on transient tachypnea of the neonate. Neonatology. 2019;115:263–8.

    Article  PubMed  Google Scholar 

  29. Abu-Zidan FM, Hefny AF, Corr P. Clinical ultrasound physics. J Emerg Trauma Shock. 2011;4:501–3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shriki J. Ultrasound physics. Crit Care Clin. 2014;30:1–24.

    Article  PubMed  Google Scholar 

  31. Corsini I, Parri N, Ficial B, Dani C. Lung ultrasound in the neonatal intensive care unit: review of the literature and future perspectives. Pediatr Pulmonol. 2020;55:1550–62.

    Article  PubMed  Google Scholar 

  32. Gomond-Le Goff C, Vivalda L, Foligno S, Loi B, Yousef N, De, et al. Effect of different probes and expertise on the interpretation reliability of point-of-care lung ultrasound. Chest. 2020;157:924–31.

    Article  PubMed  Google Scholar 

  33. Abu-Zidan FM, Cevik AA. Diagnostic point-of-care ultrasound (POCUS) for gastrointestinal pathology: state of the art from basics to advanced. World J Emerg Surg. 2018;13:47.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Groves AM, Singh Y, Dempsey E, Molnar Z, Austin T, El-Khuffash A, et al. Introduction to neonatologist-performed echocardiography. Pediatr Res. 2018;84:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gregorio-Hernández R, Arriaga-Redondo M, Pérez-Pérez A, Ramos-Navarro C, Sánchez-Luna M. Lung ultrasound in preterm infants with respiratory distress: experience in a neonatal intensive care unit. Eur J Pediatr. 2020;179:81–9.

    Article  PubMed  Google Scholar 

  36. Vardar G, Karadag N, Karatekin G. The role of lung ultrasound as an early diagnostic tool for need of surfactant therapy in preterm infants with respiratory distress syndrome. Am J Perinatol. 2020. https://doi.org/10.1055/s-0040-1714207. [Epub ahead of print].

  37. Raimondi F, Migliaro F, Sodano A, Umbaldo A, Romano A, Vallone G, et al. Can neonatal lung ultrasound monitor fluid clearance and predict the need of respiratory support? Crit Care. 2012;16:R220.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Raimondi F, Migliaro F, Sodano A, Ferrara T, Lama S, Vallone G, et al. Use of neonatal chest ultrasound to predict noninvasive ventilation failure. Pediatrics. 2014;134:e1089–94.

    Article  PubMed  Google Scholar 

  39. Oulego-Erroz I, Alonso-Quintela P, Terroba-Seara S, Jiménez-González A, Rodríguez-Blanco S. Early assessment of lung aeration using an ultrasound score as a biomarker of developing bronchopulmonary dysplasia: a prospective observational study. J Perinatol. 2021;41:62–8.

    Article  CAS  PubMed  Google Scholar 

  40. Avni EF, Cassart M, de Maertelaer V, Rypens F, Vermeylen D, Gevenois PA. Sonographic prediction of chronic lung disease in the premature undergoing mechanical ventilation. Pediatr Radio. 1996;26:463–9.

    Article  CAS  Google Scholar 

  41. Pieper CH, Smith J, Brand EJ. The value of ultrasound examination of the lungs in predicting bronchopulmonary dysplasia. Pediatr Radio. 2004;34:227–31.

    Article  Google Scholar 

  42. Gao S, Xiao T, Ju R, Ma R, Zhang X, Dong W. The application value of lung ultrasound findings in preterm infants with bronchopulmonary dysplasia. Transl Pediatr. 2020;9:93–100.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sorokan ST, Jefferies AL, Miller SP. Imaging the term neonatal brain. Paediatr Child Health. 2018;23:322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stock KW, Chen Q, Hatabu H, Edelman RR. Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging. 1999;17:997–1000.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70:1241–50.

    Article  PubMed  Google Scholar 

  46. Voskrebenzev A, Vogel-Claussen J. Proton MRI of the lung: how to tame scarce protons and fast signal decay. J Magn Reson Imaging. 2020. https://doi.org/10.1002/jmri.27122. Online ahead of print.

  47. Willmering MM, Robison RK, Wang H, Pipe JG, Woods JC. Implementation of the FLORET UTE sequence for lung imaging. Magn Reson Med. 2019;82:1091–100.

    PubMed  PubMed Central  Google Scholar 

  48. Dournes G, Grodzki D, Macey J, Girodet P-O, Fayon M, Chateil J-F, et al. Quiet submillimeter MR imaging of the lung is feasible with a PETRA sequence at 1.5 T. Radiology. 2015;276:258–65.

    Article  PubMed  Google Scholar 

  49. Weiger M, Brunner DO, Dietrich BE, Müller CF, Pruessmann KP. ZTE imaging in humans. Magn Reson Med. 2013;70:328–32.

    Article  PubMed  Google Scholar 

  50. Roach DJ, Cremillieux Y, Fleck RJ, Brody AS, Serai SD, Szczesniak RD, et al. Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc. 2016;13:1923–31.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hahn AD, Higano NS, Walkup LL, Thomen RP, Cao X, Merhar SL, et al. Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J Magn Reson Imaging. 2017;45:463–71.

    Article  PubMed  Google Scholar 

  52. Higano NS, Fleck RJ, Spielberg DR, Walkup LL, Hahn AD, Thomen RP, et al. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT. J Magn Reson Imaging. 2017;46:992–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dournes G, Menut F, Macey J, Fayon M, Chateil J-F, Salel M, et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radio. 2016;26:3811–20.

    Article  Google Scholar 

  54. Roach DJ, Cremillieux Y, Serai SD, Thomen RP, Wang H, Zou Y, et al. Morphological and quantitative evaluation of emphysema in chronic obstructive pulmonary disease patients: a comparative study of MRI with CT. J Magn Reson Imaging. 2016;44:1656–63.

    Article  PubMed  Google Scholar 

  55. Higano NS, Spielberg DR, Fleck RJ, Schapiro AH, Walkup LL, Hahn AD, et al. Neonatal pulmonary MRI of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am J Respir Crit Care Med. 2018:rccm.201711-2287OC. https://doi.org/10.1164/rccm.201711-2287OC.

  56. Hysinger E, St. Onge I, Higano N, Fleck R, Kingma PS, Woods JC. Neonatal pulmonary magnetic resonance imaging predicts respiratory outcomes through two years of life in bronchopulmonary dysplasia. Proc Am Thorac Soc. 2020:A2774. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A2774.

  57. Adaikalam S, Higano N, Hysinger E, Bates A, Fleck RJ, Schapiro A, et al. Clinically-relevant tracheostomy prediction model in neonatal bronchopulmonary dysplasia via lung and airway MRI. Proc Am Thorac Soc. 2020:A5975. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A5975.

  58. Higano NS, Fleck RJ, Schapiro AH, House M, Kingma PS, Woods JC. Lung density and disease severity of neonatal bronchopulmonary dysplasia: objective quantification via ultrashort echo-time MRI and comparison to reader scoring. Proc Am Thorac Soc. 2019:A4005. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4005.

  59. Adaikalam SA, Higano NS, Tkach JA, Yen Lim F, Haberman B, Woods JC, et al. Neonatal lung growth in congenital diaphragmatic hernia: evaluation of lung density and mass by pulmonary MRI. Pediatr Res. 2019;86:635–40.

    Article  CAS  PubMed  Google Scholar 

  60. Park HJ, Lee SM, Song JW, Lee SM, Oh SY, Kim N, et al. Texture-based automated quantitative assessment of regional patterns on initial CT in patients with idiopathic pulmonary fibrosis: relationship to decline in forced vital capacity. Am J Roentgenol. 2016;207:976–83.

    Article  Google Scholar 

  61. Cunliffe AR, Armato SG 3rd, Straus C, Malik R, Al-Hallaq HA. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy. Phys Med Biol. 2014;59:5387–98.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Walkup LL, Tkach JA, Higano NS, Thomen RP, Fain SB, Merhar SL, et al. Quantitative magnetic resonance imaging of bronchopulmonary dysplasia in the neonatal intensive care unit environment. Am J Respir Crit Care Med. 2015;192:1215–22.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schopper MA, Walkup LL, Tkach JA, Higano NS, Lim FY, Haberman B, et al. Evaluation of neonatal lung volume growth by pulmonary magnetic resonance imaging in patients with congenital diaphragmatic hernia. J Pediatr. 2017;188:96–102.e1.

    Article  PubMed  Google Scholar 

  64. Higano NS, Hahn AD, Tkach JA, Cao X, Walkup LL, Thomen RP, et al. Retrospective respiratory self-gating and removal of bulk motion in pulmonary UTE MRI of neonates and adults. Magn Reson Med. 2017;77:1284–95.

    Article  PubMed  Google Scholar 

  65. Yoder LM, Higano NS, Schapiro AH, Fleck RJ, Hysinger EB, Bates AJ, et al. Elevated lung volumes in neonates with bronchopulmonary dysplasia measured via MRI. Pediatr Pulmonol. 2019;54:1311–8.

    PubMed  Google Scholar 

  66. Gouwens KR, Higano NS, Marks KT, Stimpfl JN, Hysinger EB, Woods JC, et al. MRI evaluation of regional lung tidal volumes in severe neonatal bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2020;202:1024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bates A, Higano N, Schuh A, Hahn A, Fain S, Kingma P, et al. Lung ventilation maps in neonates with congenital diaphragmatic hernia from registration of ultra-short echo time magnetic resonance imaging. Proc Am Thorac Soc. 2020:A4685. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A4685.

  68. Bates A, Higano N, Schuh A, Hahn A, Carey K, Fain S, et al. Neonatal lung ventilation mapping from proton ultrashort echo-tme MRI. Proc Int Soc Magn Reson Med 28. 2020. Abstract 0084.

  69. Hahn AD, Malkus A, Kammerman J, Higano N, Walkup L, Woods J, et al. Characterization of R2 and tissue density in the human lung: application to neonatal imaging in the intensive care unit. Magn Reson Med. 2020;84:920–7.

    Article  PubMed  Google Scholar 

  70. Förster K, Ertl-Wagner B, Ehrhardt H, Busen H, Sass S, Pomschar A, et al. Altered relaxation times in MRI indicate bronchopulmonary dysplasia. Thorax. 2020;75:184–7.

    Article  PubMed  Google Scholar 

  71. Bates AJ, Higano NS, Hysinger EB, Fleck RJ, Hahn AD, Fain SB, et al. Quantitative assessment of regional dynamic airway collapse in neonates via retrospectively respiratory-gated (1) H ultrashort echo time MRI. J Magn Reson Imaging. 2019;49:659–67.

    Article  PubMed  Google Scholar 

  72. Hysinger EB, Bates AJ, Higano NS, Benscoter D, Fleck RJ, Hart C, et al. Ultrashort echo-time MRI for the assessment of tracheomalacia in neonates. Chest. 2020;157:595–602.

    Article  PubMed  Google Scholar 

  73. Gunatilaka CC, Higano NS, Hysinger EB, Gandhi DB, Fleck RJ, Hahn AD, et al. Increased work of breathing due to tracheomalacia in neonates. Ann Am Thorac Soc. 2020;17:1247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Woods JC, Choong CK, Yablonskiy DA, Bentley J, Wong J, Pierce JA, et al. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med. 2006;56:1293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fain SB, Panth SR, Evans MD, Wentland AL, Holmes JH, Korosec FR, et al. Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology. 2006;239:875–83.

    Article  PubMed  Google Scholar 

  76. Fain SB, Altes TA, Panth SR, Evans MD, Waters B, Mugler JP 3rd, et al. Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad Radio. 2005;12:1385–93.

    Article  Google Scholar 

  77. Thomen RP, Quirk JD, Roach D, Egan-Rojas T, Ruppert K, Yusen RD, et al. Direct comparison of (129) Xe diffusion measurements with quantitative histology in human lungs. Magn Reson Med. 2017;77:265–72.

    Article  PubMed  Google Scholar 

  78. Ruppert K, Qing K, Patrie JT, Altes TA, Mugler JP 3rd. Using hyperpolarized xenon-129 MRI to quantify early-stage lung disease in smokers. Acad Radiol. 2019;26:355–66.

    Article  PubMed  Google Scholar 

  79. Cadman RV, Lemanske RF Jr, Evans MD, Jackson DJ, Gern JE, Sorkness RL, et al. Pulmonary 3He magnetic resonance imaging of childhood asthma. J Allergy Clin Immunol. 2013;131:365–9.

    Article  Google Scholar 

  80. Walkup LL, Roach DJ, Hall CS, Gupta N, Thomen RP, Cleveland ZI, et al. Cyst ventilation heterogeneity and alveolar airspace dilation as early disease markers in lymphangioleiomyomatosis. Ann Am Thorac Soc. 2019;16:1008–16.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thomen RP, Walkup LL, Roach DJ, Cleveland ZI, Clancy JP, Woods JC. Hyperpolarized (129)Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros. 2017;16:275–82.

    Article  CAS  PubMed  Google Scholar 

  82. Lutey BA, Lefrak SS, Woods JC, Tanoli T, Quirk JD, Bashir A, et al. Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology. 2008;248:655–61.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Driehuys B, Martinez-Jimenez S, Cleveland ZI, Metz GM, Beaver DM, Nouls JC, et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology. 2012;262:279–89.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Walkup LL, Thomen RP, Akinyi TG, Watters E, Ruppert K, Clancy JP, et al. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radio. 2016;46:1651–62.

    Article  Google Scholar 

  85. Spoel M, Marshall H, IJsselstijn H, Parra-Robles J, van der Wiel E, Swift AJ, et al. Pulmonary ventilation and micro-structural findings in congenital diaphragmatic hernia. Pediatr Pulmonol. 2016;51:517–24.

    Article  PubMed  Google Scholar 

  86. Flors L, Mugler JP 3rd, Paget-Brown A, Froh DK, de Lange EE, Patrie JT, et al. Hyperpolarized helium-3 diffusion-weighted magnetic resonance imaging detects abnormalities of lung structure in children with bronchopulmonary dysplasia. J Thorac Imaging. 2017;32:323–32.

    Article  PubMed  Google Scholar 

  87. Wild J, Biancardi A, Chan H, Smith L, Bray J, Marshall H, et al. Imaging functional and microstructural changes in the lungs of children born prematurely. Proc Int Soc Mag Reson Med 27. 2019. Abstract 4083.

  88. Altes TA, Meyer CH, Mata JF, Froh DK, Paget-Brown A, Gerald Teague W, et al. Hyperpolarized helium-3 magnetic resonance lung imaging of non-sedated infants and young children: a proof-of-concept study. Clin Imaging. 2017;45:105–10.

    Article  PubMed  Google Scholar 

  89. Fogel MA, Pawlowski TW, Harris MA, Whitehead KK, Keller MS, Wilson J, et al. Comparison and usefulness of cardiac magnetic resonance versus computed tomography in infants six months of age or younger with aortic arch anomalies without deep sedation or anesthesia. Am J Cardiol. 2011;108:120–5.

    Article  PubMed  Google Scholar 

  90. Tkach JA, Merhar SL, Kline-Fath BM, Pratt RG, Loew WM, Daniels BR, et al. MRI in the neonatal ICU: initial experience using a small-footprint 1.5-T system. Am J Roentgenol. 2014;202:W95–W105.

    Article  Google Scholar 

  91. Merhar SL, Tkach JA, Woods JC, South AP, Wiland EL, Rattan MS, et al. Neonatal imaging using an on-site small footprint MR scanner. Pediatr Radio. 2017;47:1001–11.

    Article  Google Scholar 

  92. Adams EW, Harrison MC, Counsell SJ, Allsop JM, Kennea NL, Hajnal JV, et al. Increased lung water and tissue damage in bronchopulmonary dysplasia. J Pediatr. 2004;145:503–7.

    Article  PubMed  Google Scholar 

  93. Griffiths PD, Jarvis D, Armstrong L, Connolly DJA, Bayliss P, Cook J, et al. Initial experience of an investigational 3T MR scanner designed for use on neonatal wards. Eur Radio. 2018;28:4438–46.

    Article  Google Scholar 

  94. Ibrahim J, Mir I, Chalak L. Brain imaging in preterm infants <32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr Res. 2018;84:799–806.

    Article  CAS  PubMed  Google Scholar 

  95. New York-Presbyterian Alexandra Cohen Hospital for Women and Newborns Opens—A New Center for Exceptional, Personalized Care. Weill Cornell Medicine Newsroom. 2020. https://news.weill.cornell.edu/news/2020/07/newyork-presbyterian-alexandra-cohen-hospital-for-women-and-newborns-opens-a-new.

  96. Hurst JR, Beckmann J, Ni Y, Bolton CE, McEniery CM, Cockcroft JR, et al. Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years. Am J Respir Crit Care Med. 2020;202:422–32.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Critser PJ, Higano NS, Tkach JA, Olson ES, Spielberg DR, Kingma PS, et al. Cardiac magnetic resonance imaging evaluation of neonatal bronchopulmonary dysplasia-associated pulmonary hypertension. Am J Respir Crit Care Med. 2020;201:73–82.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Critser PJ, Higano NS, Lang SM, Kingma PS, Fleck RJ, Hirsch R, et al. Cardiovascular magnetic resonance imaging derived septal curvature in neonates with bronchopulmonary dysplasia associated pulmonary hypertension. J Cardiovasc Magn Reson J Soc Cardiovasc Magn Reson. 2020;22:50.

    Article  Google Scholar 

  99. Lemyre B, Dunn M, Thebaud B. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia in preterm infants. Paediatr Child Health. 2020;25:322–31.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Olaloko O, Mohammed R, Ojha U. Evaluating the use of corticosteroids in preventing and treating bronchopulmonary dysplasia in preterm neonates. Int J Gen Med. 2018;11:265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors were supported by NIH R01 HL146689.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to design, drafting, and proofing of the manuscript.

Corresponding author

Correspondence to Jason C. Woods.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higano, N.S., Ruoss, J.L. & Woods, J.C. Modern pulmonary imaging of bronchopulmonary dysplasia. J Perinatol 41, 707–717 (2021). https://doi.org/10.1038/s41372-021-00929-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-00929-7

This article is cited by

Search

Quick links