Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery

Abstract

Cardiovascular calcification is a health disorder with increasing prevalence and high morbidity and mortality. The only available therapeutic options for calcific vascular and valvular heart disease are invasive transcatheter procedures or surgeries that do not fully address the wide spectrum of these conditions; therefore, an urgent need exists for medical options. Cardiovascular calcification is an active process, which provides a potential opportunity for effective therapeutic targeting. Numerous biological processes are involved in calcific disease, including matrix remodelling, transcriptional regulation, mitochondrial dysfunction, oxidative stress, calcium and phosphate signalling, endoplasmic reticulum stress, lipid and mineral metabolism, autophagy, inflammation, apoptosis, loss of mineralization inhibition, impaired mineral resorption, cellular senescence and extracellular vesicles that act as precursors of microcalcification. Advances in molecular imaging and big data technology, including in multiomics and network medicine, and the integration of these approaches are helping to provide a more comprehensive map of human disease. In this Review, we discuss ectopic calcification processes in the cardiovascular system, with an emphasis on emerging mechanistic knowledge obtained through patient data and advances in imaging methods, experimental models and multiomics-generated big data. We also highlight the potential and challenges of artificial intelligence, machine learning and deep learning to integrate imaging and mechanistic data for drug discovery.

Key points

  • Cardiovascular calcification is an urgent worldwide health problem with no available treatments beyond surgery and invasive transcatheter valve replacement; therefore, an unmet need exists for medical options.

  • Current methods for cardiovascular calcification imaging are mostly limited to advanced calcification and miss clinically relevant early microcalcifications; implementation of advanced imaging tools and artificial intelligence might improve diagnostics and risk assessment.

  • Several biological processes contribute to cardiovascular calcification, including extracellular vesicle release, matrix remodelling, loss of mineral-deposition inhibition, impaired mineral resorption, oxidative stress, mitochondrial dysfunction, inflammation and stem and progenitor cell programmes.

  • Multiomics data integration reveals novel disease pathways and therapeutic targets, but its implementation in cardiovascular calcification research is failing to keep pace with other research fields, such as oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiovascular calcification discovery pipeline.
Fig. 2: Artificial intelligence: terminology, advantages and current challenges.
Fig. 3: STRING database networks for arterial and valvular calcification.
Fig. 4: Novel mechanistic pathways driving cardiovascular calcification.

Similar content being viewed by others

References

  1. Demer, L. L. & Tintut, Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 117, 2938–2948 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Hutcheson, J. D., Aikawa, E. & Merryman, W. D. Potential drug targets for calcific aortic valve disease. Nat. Rev. Cardiol. 11, 218–231 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelly-Arnold, A. et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl Acad. Sci. USA 110, 10741–10746 (2013).

    CAS  PubMed  Google Scholar 

  4. Schurgin, S., Rich, S. & Mazzone, T. Increased prevalence of significant coronary artery calcification in patients with diabetes. Diabetes Care 24, 335–338 (2001).

    CAS  PubMed  Google Scholar 

  5. Abd Alamir, M. & Goyfman, M. et al. The correlation of dyslipidemia with the extent of coronary artery disease in the multiethnic study of atherosclerosis. J. Lipids 2018, 5607349 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Allison, M. A. et al. Renal artery calcium is independently associated with hypertension. J. Am. Coll. Cardiol. 50, 1578–1583 (2007).

    CAS  PubMed  Google Scholar 

  7. McClelland, R. L., Chung, H., Detrano, R., Post, W. & Kronmal, R. A. Distribution of coronary artery calcium by race, gender, and age: results from the multi-ethnic study of atherosclerosis (MESA). Circulation 113, 30–37 (2006).

    PubMed  Google Scholar 

  8. McEvoy, J. W. et al. Relationship of cigarette smoking with inflammation and subclinical vascular disease: the multi-ethnic study of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 1002–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodman, W. G. et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342, 1478–1483 (2000).

    CAS  PubMed  Google Scholar 

  10. Shaw, L. J. et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: a cohort study. Ann. Intern. Med. 163, 14–21 (2015).

    PubMed  Google Scholar 

  11. Garrison, L. P. et al. The clinical and cost burden of coronary calcification in a Medicare cohort: an economic model to address under-reporting and misclassification. Cardiovasc. Revasc. Med. 16, 406–412 (2015).

    PubMed  Google Scholar 

  12. Pohle, K. et al. Progression of aortic valve calcification: association with coronary atherosclerosis and cardiovascular risk factors. Circulation 104, 1927–1932 (2001).

    CAS  PubMed  Google Scholar 

  13. Henein, M. et al. Aortic root, not valve, calcification correlates with coronary artery calcification in patients with severe aortic stenosis: a two-center study. Atherosclerosis 243, 631–637 (2015).

    CAS  PubMed  Google Scholar 

  14. Kim, K. M. Calcification of matrix vesicles in human aortic valve and aortic media. Fed. Proc. 35, 156–162 (1976).

    CAS  PubMed  Google Scholar 

  15. Fenoglio, J. J. et al. Congenital bicuspid aortic valve after age 20. Am. J. Cardiol. 39, 164–169 (1977).

    PubMed  Google Scholar 

  16. Yutzey, K. E. et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler. Thromb. Vasc. Biol. 34, 2387–2393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Osnabrugge, R. L. et al. Aortic stenosis in the ederly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modelling study. J. Am. Coll. Cardiol. 62, 1002–1012 (2013).

    PubMed  Google Scholar 

  18. New, S. E. & Aikawa, E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 108, 1381–1391 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aikawa, E. & Otto, C. M. Look more closely at the valve: imaging calcific aortic valve disease. Circulation 125, 9–11 (2012).

    PubMed  Google Scholar 

  20. Dweck, M. R. et al. Noninvasive molecular imaging of disease activity in atherosclerosis. Circ. Res. 119, 330–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gregory, C. A., Gunn, W. G., Peister, A. & Prockop, D. J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).

    CAS  PubMed  Google Scholar 

  22. Aikawa, E. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116, 2841–2850 (2007).

    CAS  PubMed  Google Scholar 

  23. Baugh, L. M. et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease. Nat. Biomed. Eng. 11, 914–924 (2017).

    Google Scholar 

  24. You, A. Y. F. et al. Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Sci. Adv. 3, e1701156 (2017).

    Google Scholar 

  25. Bertazzo, S. et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 12, 576–583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hutcheson, J. D. et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 15, 335–343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Greenland, P., LaBree, L., Azen, S. P., Doherty, T. M. & Detrano, R. C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291, 210–215 (2004).

    CAS  PubMed  Google Scholar 

  28. Arad, Y., Goodman, K. J., Roth, M., Newstein, D. & Guerci, A. D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J. Am. Coll. Cardiol. 46, 158–165 (2005).

    CAS  PubMed  Google Scholar 

  29. Derlin, T. et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J. Nucl. Med. 51, 862–865 (2010).

    PubMed  Google Scholar 

  30. Irkle, A. et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun. 6, 7495 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Dweck, M. R. et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation 125, 76–86 (2012).

    CAS  PubMed  Google Scholar 

  32. Sofie, A. M. et al. Automatic quantification of calcifications in the coronary arteries and thoracic aorta on radiotherapy planning CT scans of Western and Asian breast cancer patients. Radiother. Oncol. 127, 487–492 (2018).

    Google Scholar 

  33. Motwani, M. et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur. Heart J. 38, 500–507 (2017).

    PubMed  Google Scholar 

  34. O’Donnell, C. J. et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 124, 2855–2864 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. van Setten, J. et al. Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis 228, 400–405 (2013).

    PubMed  Google Scholar 

  36. Pechlivanis, S. et al. Coronary artery calcification and its relationship to validated genetic variants for diabetes mellitus assessed in the Heinz Nixdorf recall cohort. Arterioscler. Thromb. Vasc. Biol. 30, 1867–1872 (2010).

    CAS  PubMed  Google Scholar 

  37. Divers, J. et al. Admixture mapping of coronary artery calcified plaque in African Americans with type 2 diabetes mellitus. Circ. Cardiovasc. Genet. 6, 97–105 (2013).

    CAS  PubMed  Google Scholar 

  38. Polfus, L. M. et al. Genome-wide association study of gene by smoking interactions in coronary artery calcification. PLOS ONE 8, e74642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Adams, H. H. et al. Heritability and genome wide association analyses of intracranial carotid artery calcification: the Rotterdam study. Stroke 47, 912–917 (2016).

    CAS  PubMed  Google Scholar 

  40. Ferguson, J. F. et al. Candidate gene association study of coronary artery calcification in chronic kidney disease: findings from the CRIC study (Chronic Renal Insufficiency Cohort). J. Am. Coll. Cardiol. 62, 789–798 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thanassoulis, G. et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 368, 503–512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Thériault, S. et al. A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nat. Commun. 9, 988 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Helgadottir, A. et al. Genome-wide analysis yields new loci associating with aortic valve stenosis. Nat. Commun. 9, 987 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Guauque-Olarte, S. et al. Calcium signaling pathway genes RUNX2 and CACNA1C are associated with calcific aortic valve disease. Circ. Cardiovasc. Genet. 8, 812–822 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Prakash, S. K. et al. A roadmap to investigate the genetic basis of bicuspid aortic valve and its complications: insights from the international BAVCon (Bicuspid Aortic Valve Consortium). J. Am. Coll. Cardiol. 64, 832–839 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lello, L. et al. Accurate genomic prediction of human height. Genetics 210, 477–497 (2018).

    PubMed  Google Scholar 

  47. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Azpiazu, D., González-Parra, E., Ortiz, A., Egido, J. & Villa-Bellosta, R. Impact of post-dialysis calcium level on ex vivo rat aortic wall calcification. PLOS ONE 12, e0183730 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Shroff, R. C. et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J. Am. Soc. Nephrol. 21, 103–112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shioi, A. et al. Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15, 2003–2009 (1995).

    CAS  PubMed  Google Scholar 

  51. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).

    CAS  PubMed  Google Scholar 

  52. Watson, K. E. et al. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J. Clin. Invest. 93, 2106–2113 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hutcheson, J. D., Blaser, M. C. & Aikawa, E. Giving calcification its due: recognition of a diverse disease: a first attempt to standardize the field. Circ. Res. 120, 270–273 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hjortnaes, J. et al. Simulation of early calcific aortic valve disease in a 3D platform: a role for myoflibroblast differentiation. J. Mol. Cell. Cardiol. 94, 13–20 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Porras, A. M., Westlund, J. A., Evans, A. D. & Masters, K. S. Creation of disease-inspired biomaterial environments to mimic pathological events in early calcific aortic valve disease. Proc. Natl Acad. Sci. USA 115, E363–E371 (2018).

    CAS  PubMed  Google Scholar 

  56. van der Valk, D. C. et al. Engineering a 3D-bioprinted model of human heart valve disease using nanoindentation-based biomechanics. Nanomaterials 8, E296 (2018).

    PubMed  Google Scholar 

  57. Rogers, M., Goettsch, C. & Aikawa, E. Medial and intimal calcification in chronic kidney disease: stressing the contributions. J. Am. Heart Assoc. 2, e000481 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Bennett, B. J. et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 26, 2117–2124 (2006).

    CAS  PubMed  Google Scholar 

  59. Dong, Z. M. et al. The combined role of P and E-selectins in atherosclerosis. J. Clin. Invest. 102, 145–152 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aikawa, E. et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119, 1785–1794 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Goettsch, C. et al. A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis 251, 109–118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuan, F. et al. Ossabaw pigs with a PCSK9 gain-of-function mutation develop accelerated coronary atherosclerotic lesions: a novel model for preclinical studies. J. Am. Heart Assoc. 7, e006207 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Honda, S. et al. A novel mouse model of aortic valve stenosis induced by direct wire injury. Arterioscler. Thromb. Vasc. Biol. 34, 270–278 (2014).

    CAS  PubMed  Google Scholar 

  64. Bouchareb, R. et al. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation 132, 677–690 (2015).

    CAS  PubMed  Google Scholar 

  65. Luechtefeld, T., Marsh, D., Rowlands, C. & Hartung, T. Machine learning of toxicological big data enables, read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol. Sci. 165, 198–212 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Higaki, A. et al. Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning. PLOS ONE 13, e0191708 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Wu, M., Rementer, C. & Giachelli, C. M. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif. Tissue Int. 93, 365–373 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sage, A. P., Tintut, Y. & Demer, L. L. Regulatory mechanisms in vascular calcification. Nat. Rev. Cardiol. 7, 528–536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Leopold, J. A. Cellular mechanisms of aortic valve calcification. Circ. Cardiovasc. Interv. 5, 605–614 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Proudfoot, D. & Shanahan, C. M. Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology 11, 455–461 (2006).

    CAS  PubMed  Google Scholar 

  71. Shao, J. S., Cai, J. & Towler, D. A. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler. Thromb. Vasc. Biol. 26, 1423–1430 (2006).

    CAS  PubMed  Google Scholar 

  72. Pawade, T. A., Newby, D. E. & Dweck, M. R. Calcification in aortic stenosis: the skeleton key. J. Am. Coll. Cardiol. 66, 561–577 (2015).

    PubMed  Google Scholar 

  73. Shroff, R. C. et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118, 1748–1757 (2008).

    CAS  PubMed  Google Scholar 

  74. Kapustin, A. N. et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ. Res. 109, e1–e12 (2011).

    CAS  PubMed  Google Scholar 

  75. Goettsch, C. et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J. Clin. Invest. 126, 1323–1336 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Itoh, S., Mizuno, K., Aikawa, M. & Aikawa, E. Dimerization of sortilin regulates its trafficking to extracellular vesicles. J. Biol. Chem. 293, 4532–4544 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Goettsch, C. et al. Serum sortilin associates with aortic calcification and cardiovascular risk in men. Arterioscler. Thromb. Vasc. Biol. 37, 1005–1011 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hagita, S. et al. Transcriptional control of intestinal cholesterol absorption, adipose energy expenditure and lipid handling by sortilin. Sci. Rep. 8, 9006 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Dai, X. Y. et al. Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int. 83, 1042–1051 (2013).

    CAS  PubMed  Google Scholar 

  80. New, S. E. et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ. Res. 113, 72–77 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ko, J. et al. miRNA profiling of magnetic nanopore-isolated extraceullar vesicles for the diagnosis of pancreatic cancer. Cancer Res. 78, 3688–3697 (2018).

    CAS  PubMed  Google Scholar 

  82. Watson, K. E., Parhami, F., Shin, V. & Demer, L. L. Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioscler. Thromb. Vasc. Biol. 18, 1964–1971 (1998).

    CAS  PubMed  Google Scholar 

  83. Kuzan, A. et al. The content of collagen type II in human arteries is correlated with the stage of atherosclerosis and calcification foci. Cardiovasc. Pathol. 28, 21–27 (2017).

    CAS  PubMed  Google Scholar 

  84. Krohn, J. B. et al. Discoidin domain receptor-1 regulates calcific extracellular vesicle release in vascular smooth muscle cell fibrocalcific response via transforming growth factor-β signaling. Arterioscler. Thromb. Vasc. Biol. 36, 525–533 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodriguez, K. J., Piechura, L. M., Porras, A. M. & Masters, K. S. Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification. BMC Cardiovasc. Disord. 14, 29 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Yip, C. Y., Chen, J. H., Zhao, R. & Simmons, C. A. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29, 936–942 (2009).

    CAS  PubMed  Google Scholar 

  87. Taroni, P. et al. Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: a pilot study. Sci. Rep. 7, 40683 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).

    CAS  PubMed  Google Scholar 

  89. Thamratnopkoon, S. et al. Correlations of plasma desphosphorylated uncarboxylated matrix GLA protein with vascular calcification and vascular stiffness in chronic kidney disease. Nephron 135, 167–172 (2017).

    CAS  PubMed  Google Scholar 

  90. Sardana, M. et al. Inactive matrix Gla-protein and arterial stiffness in type 2 diabetes. Am. J. Hypertens. 30, 196–201 (2017).

    CAS  PubMed  Google Scholar 

  91. Jahnen-Dechent, W. et al. Cloning and targeted deletion of the mouse fetuin gene. J. Biol. Chem. 272, 31496–31503 (1997).

    CAS  PubMed  Google Scholar 

  92. Schafer, C. et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112, 357–366 (2003).

    PubMed  PubMed Central  Google Scholar 

  93. Ketteler, M. et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361, 827–833 (2003).

    CAS  PubMed  Google Scholar 

  94. Wada, T., McKee, M. D., Steitz, S. & Giachelli, C. M. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ. Res. 84, 166–178 (1999).

    CAS  PubMed  Google Scholar 

  95. Steitz, S. A. et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am. J. Pathol. 161, 2035–2046 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Speer, M. Y. et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J. Exp. Med. 196, 1047–1055 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu, P. J. et al. Correlation between plasma osteopontin levels and aortic valve calcification: potential insights into the pathogenesis of aortic valve calcification and stenosis. J. Thorac. Cardiovasc. Surg. 138, 196–199 (2009).

    PubMed  Google Scholar 

  98. El-Abbadi, M. M. et al. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 75, 1297–1307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ge, Q. et al. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci. Rep. 7, 40253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nagy, E. et al. Interferon-γ released by activated CD8+ T lymphocytes impairs the calcium resorption potential of osteoclasts in calcified human aortic valves. Am. J. Pathol. 187, 1413–1425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chinetti-Gbaguidi, G. et al. Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone resportion activity. Circ. Res. 121, 19–30 (2017).

    CAS  PubMed  Google Scholar 

  102. Rogers, M. A., Aikawa, M. & Aikawa, E. Macrophage heterogeneity complicates reversal of calcification in cardiovascular tissues. Circ. Res. 121, 5–7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dykun, I. et al. Statin medication enhances progression of coronary artery calcification: the Heinz Nixdord Recall Study. J. Am. Coll. Cardiol. 68, 2123–2125 (2016).

    PubMed  Google Scholar 

  104. Okuyama, H. et al. Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms. Expert Rev. Clin. Pharmacol. 8, 189–199 (2015).

    CAS  PubMed  Google Scholar 

  105. Li, H. et al. Atorvastatin reduces calcification in rat arteries and vascular smooth muscle cells. Basic Clin. Pharmacol. Toxicol. 107, 798–802 (2010).

    CAS  PubMed  Google Scholar 

  106. Brandenburg, V. M. et al. Slower progress of aortic valve calcification with vitamin K supplementation: results from a prospective interventional proof-of-concept study. Circulation 135, 2081–2083 (2017).

    PubMed  Google Scholar 

  107. Peeters, F. E. C. M. et al. Bicuspid aortic valve stenosis and the effect of vitamin K2 on calcification using 18F-sodium fluoride positron emission tomography/magnetic resonance: the BASIK2 rationale and design. Nutrients 10, E386 (2018).

    PubMed  Google Scholar 

  108. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  109. Aikawa, E. et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115, 377–386 (2007).

    CAS  PubMed  Google Scholar 

  110. Abdelbaky, A. et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ. Cardiovasc. Imaging 6, 747–754 (2013).

    PubMed  Google Scholar 

  111. Al-Aly, Z. et al. Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 27, 2589–2596 (2007).

    CAS  PubMed  Google Scholar 

  112. Masuda, M., Miyazaki-Anzai, S., Levi, M., Ting, T. C. & Miyazaki, M. PERK-eIF2α-ATF4-CHOP signaling contributes to TNFα-induced vascular calcification. J. Am. Heart Assoc. 2, e000238 (2013).

    PubMed  PubMed Central  Google Scholar 

  113. Li, X., Yang, H. Y. & Giachelli, C. M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 98, 905–912 (2006).

    CAS  PubMed  Google Scholar 

  114. Choi, B. et al. Dipeptidyl peptidase-4 induces aortic valve calcification by inhibiting insulin-like growth factor-1 signaling in valvular interstitial cells. Circulation 135, 1935–1950 (2017).

    CAS  PubMed  Google Scholar 

  115. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Raal, F. J. et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 63, 1278–1288 (2014).

    CAS  PubMed  Google Scholar 

  117. Rogers, M. A. & Aikawa, E. A not-so-little role for lipoprotein(a) in the development of calcific aortic valve disease. Circulation 132, 621–623 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Ikegami, Y. et al. The annual rate of coronary artery calcification with combination therapy with a PCSK9 inhibitor and a statin is lower than that with statin monotherapy. NPJ Aging Mech. Dis. 4, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  120. Mosch, J., Gleissner, C. A., Body, S. & Aikawa, E. Histophathological assessment of calcification and inflammation of calcific aortic valves from patients with and without diabetes mellitus. Histol. Histopathol. 32, 293–306 (2017).

    CAS  PubMed  Google Scholar 

  121. Rudolph, M. D. et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 21, 765–772 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mody, N., Parhami, F., Sarafian, T. A. & Demer, L. L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31, 509–519 (2001).

    CAS  PubMed  Google Scholar 

  123. Elmariah, S. et al. Bisphosphonate use and prevalence of valvular and vascular calcification in women MESA (the multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol. 56, 1752–1759 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Demer, L. L. Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int. J. Epidemiol. 31, 737–741 (2002).

    PubMed  Google Scholar 

  125. Rogers, M. A. et al. Dynamin-related protein 1 inhibition attenuates cardiovascular calcification in the presence of oxidative stress. Circ. Res. 121, 220–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, Q. et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1 mediated mitochondrial fission. Diabetes 66, 193–205 (2017).

    CAS  PubMed  Google Scholar 

  127. Fitch, K. et al. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS 26, 587–597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cui, L., Li, Z., Chang, X., Cong, G. & Hao, L. Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission. Vascul. Pharmacol. 88, 21–29 (2017).

    CAS  PubMed  Google Scholar 

  129. Jan, M. I. et al. Interplay of mitochondria apoptosis regulatory factors and microRNAs in valvular heart disease. Arch. Biochem. Biophys. 633, 50–57 (2017).

    CAS  PubMed  Google Scholar 

  130. Byon, C. H. et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319–15327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. de la Villehuchet, A. M. et al. A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease. Redox Rep. 14, 23–33 (2009).

    PubMed  Google Scholar 

  132. Tyson, K. L. et al. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 23, 489–494 (2003).

    CAS  PubMed  Google Scholar 

  133. Heath, J. M. et al. Activation of AKT by O-linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circ. Res. 114, 1094–1102 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Shao, J. S. et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J. Clin. Invest. 115, 1210–1220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Peacock, J. D., Levay, A. K., Gillaspie, D. B., Tao, G. & Lincoln, J. Reduced sox9 function promotes heart valve calcification phenotypes in vivo. Circ. Res. 106, 712–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, J. H., Yip, C. Y., Sone, E. D. & Simmons, C. A. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am. J. Pathol. 174, 1109–1119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gössl, M. et al. Role of circulating osteogenic progenitor cells in calcific aortic stenosis. J. Am. Coll. Cardiol. 60, 1945–1953 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Leszczynska, A. & Murphy, J. M. Vascular calcification: is it rather a stem/progenitor cells driven phenomenon? Front. Bioeng. Biotechnol. 6, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Maxmen, A. Machine learning predicts the look of stem cells. Nature https://doi.org/10.1038/nature.2017.21769 (2017).

    Article  PubMed  Google Scholar 

  140. Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).

    PubMed  Google Scholar 

  141. McDole, K. et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175, 859–876 (2018).

    CAS  PubMed  Google Scholar 

  142. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wierer, M. et al. Compartment-resolved proteomic analysis of mouse aorta during atherosclerotic plaque formation reveals osteoclast-specific protein expression. Mol. Cell. Proteomics 17, 321–334 (2018).

    CAS  PubMed  Google Scholar 

  144. Steenman, M. et al. Identification of genomic difference among peripheral arterial beds in atherosclerotic and healthy arteries. Sci. Rep. 8, 3940 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Alves, R. D., Eijken, M., van de Peppel, J. & van Leeuwen, J. P. Calcifying vascular smooth muscle cells and osteoblasts: independent cell types exhibiting extracellular matrix and biomineralization-related mimicries. BMC Genomics 15, 965 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Cui, L. et al. End stage renal disease-induced hypercalcemia may promote aortic valve calcification via annexin VI enrichment of valve interstitial cell derived-matrix vesicles. J. Cell. Physiol. 232, 2985–2995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sen, S. K. et al. Integrative DNA, RNA, and protein evidence connects TREML4 to coronary artery calcification. Am. J. Hum. Genet. 95, 66–76 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Schlotter, F. et al. Spatiotemporal multi-omics mapping generates a molecular atlas of the aortic valve and reveals networks driving disease. Circulation 138, 377–393 (2018).

    CAS  PubMed  Google Scholar 

  149. Theodoris, C. V. et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanism of NOTCH1 haploinsuffiency. Cell 160, 1072–1086 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Olkowics, M. et al. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis. J. Chromatogr. A 1517, 66–78 (2017).

    Google Scholar 

  151. Goettsch, C., Hutcheson, J. D. & Aikawa, E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ. Res. 112, 1073–1084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ballantyne, M. D., McDonald, R. A. & Baker, A. H. lncRNA/MicroRNA interactions in the vasculature. Clin. Pharmacol. Ther. 99, 494–501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Weng, S. F. et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE 12, e0174944 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Slomka, P. J. et al. Cardiac imaging: working towards fully-automated machine analysis and interpretation. Expert Rev. Med. Devices 14, 197–212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gammon, K. Experimenting with blockchain: can one technology boost both data integrity and patients’ pocketbooks? Nat. Med. 24, 378–381 (2018).

    CAS  PubMed  Google Scholar 

  156. Maxmen, A. AI researchers embrace Bitcoin technology to share medical data. Nature 555, 293–294 (2018).

    CAS  PubMed  Google Scholar 

  157. Huang, S., Chaudhary, K. & Garmire, L. X. More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Johnson, K. W. et al. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71, 2668–2679 (2018).

    PubMed  Google Scholar 

  159. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. El Husseini, D. et al. High expression of the Pi-transporter SLC20A1/Pit1 in calcific aortic valve disease promotes mineralization through regulation of Akt-1. PLOS ONE 8, e53393 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Nakahara, T. et al. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc. Imaging 10, 582–593 (2017).

    PubMed  Google Scholar 

  162. Aherrahrou, R., Aherrahrou, Z., Schunkert, H. & Erdmann, J. Coronary artery disease associated gene Phactr1 modulates severity of vascular calcification in vitro. Biochem. Biophys. Res. Commun. 491, 396–402 (2017).

    CAS  PubMed  Google Scholar 

  163. Di Rosa, M. et al. Determination of chitinases family during osteoclastogenesis. Bone 61, 55–63 (2014).

    PubMed  Google Scholar 

  164. Srivastava, R. et al. Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Rep. 13, 746–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Abdeen, S. K. et al. Conditional inactivation of the mouse Wwox tumor suppressor gene recapitulates the null phenotype. J. Cell. Physiol. 228, 1377–1382 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ryan, Z. C. et al. Deletion of the intestional plasma membrane calcium pump isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3. Biochem. Biophys. Res. Commun. 467, 152–156 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Cardiology thanks L. J. Schurgers, M. Y. Speer and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.A.R. researched data for the article and wrote the manuscript. E.A. contributed substantially to the concept and discussion and revised and edited the manuscript.

Corresponding author

Correspondence to Elena Aikawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Allen Cell Explorer: https://www.allencell.org

STRING: https://string-db.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, M.A., Aikawa, E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat Rev Cardiol 16, 261–274 (2019). https://doi.org/10.1038/s41569-018-0123-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0123-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing