Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification

Abstract

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study summary.
Fig. 2: Prioritization of CAC causal genes using STARNET eQTLs.
Fig. 3: Single-nucleus coronary epigenomic annotation of ARID5B and IGFBP3 CAC loci.
Fig. 4: Genetic correlations for CAC and MR for CVD risk factors.
Fig. 5: Immunofluorescence staining showing localization of ENPP1, IGFBP3, ARID5B and ADK in control and atherosclerotic human coronary arteries.
Fig. 6: Functional assays of ENPP1, IGFBP3, ARID5B and ADK in CAC and vascular SMC phenotype.
Fig. 7: Schematic of CAC candidate genes and approved or investigational drugs.

Similar content being viewed by others

Data availability

The GWAS meta-analysis summary statistics are available on the EMBL-EBI GWAS catalog (accession numbers: GCST90278455 for the combined data and GCST90278456 for the European-only data) and the Downloads page of the Cardiovascular Disease Knowledge Portal (CVDKP) and will be integrated into CVDKP. Locus zoom plots are available at https://my.locuszoom.org/gwas/125033/ and FUMA output results are available through the FUMA website. STARNET eQTL data are available in the Database for Genotypes and Phenotypes (dbGaP) via accession: phs001203.v1.p1, as well as web browser: http://starnet.mssm.edu. Coronary artery snATAC data are available in the Gene Expression Omnibus database via accession: GSE175621. Athero-Express scRNAseq data are available at https://doi.org/10.34894/TYHGEF. snATAC and scRNAseq processed datasets are also available on the PlaqView web portal. Athero-Express GWAS, and phenotype data are available at https://doi.org/10.34894/4IKE3T. Genetic variants for imputation were obtained from 1000 Genomes Phase 3 (v5). Variant annotations were obtained from Ensembl (v92). PheWAS data were obtained from the GWAS Atlas. Gene annotations were obtained from GENCODE (v30). eQTL data were also obtained from Genotype Tissue Expression (GTEx v8). Epigenomics data were obtained from Roadmap Epigenomics (release 9) and ENCODE (v4). Pathway annotations were obtained from MsigDB (v6.2) and Kyoto Encyclopedia of Genes and Genomes (KEGG2). Druggability annotations were obtained from DGIDb (v4.0), IDGTargets, Pharos, ChEMBL, DrugBank and ClinicalTrials.gov. Source data are provided with this paper.

Code availability

General post-GWAS analysis scripts are available at https://github.com/CirculatoryHealth/CHARGE_1000G_CAC. Post-GWAS fine-mapping scripts are available at https://github.com/MillerLab-CPHG/Fine_mapping/. Coronary artery snATAC is available at https://github.com/MillerLab-CPHG/Coronary_scATAC.

References

  1. Timmis, A. et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur. Heart J. 39, 508–579 (2018).

    Article  PubMed  Google Scholar 

  2. Tsao, C. W. et al. Heart Disease and Stroke Statistics—2022 Update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  3. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Baber, U. et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J. Am. Coll. Cardiol. 65, 1065–1074 (2015).

    Article  PubMed  Google Scholar 

  5. Polonsky, T. S. et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303, 1610–1616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kavousi, M. et al. Evaluation of newer risk markers for coronary heart disease risk classification. Ann. Intern. Med. 156, 438–444 (2012).

    Article  PubMed  Google Scholar 

  7. Bielak, L. F., Rumberger, J. A., Sheedy, P. F. 2nd, Schwartz, R. S. & Peyser, P. A. Probabilistic model for prediction of angiographically defined obstructive coronary artery disease using electron beam computed tomography calcium score strata. Circulation 102, 380–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1082–e1143 (2019).

    PubMed  Google Scholar 

  9. Jin, H.-Y. et al. The relationship between coronary calcification and the natural history of coronary artery disease. JACC Cardiovasc. Imaging 14, 233–242 (2021).

    Article  PubMed  Google Scholar 

  10. Jinnouchi, H. et al. Calcium deposition within coronary atherosclerotic lesion: implications for plaque stability. Atherosclerosis 306, 85–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M. & Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 114, 590–600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakahara, T. et al. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc. Imaging 10, 582–593 (2017).

    Article  PubMed  Google Scholar 

  13. Fujiyoshi, A. et al. Coronary artery calcium and risk of dementia in mesa (multi-ethnic study of atherosclerosis). Circ. Cardiovasc. Imaging 10, e005349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Handy, C. E. et al. The association of coronary artery calcium with noncardiovascular disease: the multi-ethnic study of atherosclerosis. JACC Cardiovasc. Imaging 9, 568–576 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hermann, D. M. et al. Coronary artery calcification is an independent stroke predictor in the general population. Stroke 44, 1008–1013 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Peyser, P. A. et al. Heritability of coronary artery calcium quantity measured by electron beam computed tomography in asymptomatic adults. Circulation 106, 304–308 (2002).

    Article  PubMed  Google Scholar 

  17. Wojczynski, M. K. et al. Genetics of coronary artery calcification among African Americans, a meta-analysis. BMC Med. Genet. 14, 75 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Natarajan, P. et al. Multiethnic exome-wide association study of subclinical atherosclerosis. Circ. Cardiovasc. Genet. 9, 511–520 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Donnell, C. J. et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 124, 2855–2864 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Van Setten, J. et al. Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis 228, 400–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Agatston, A. S. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15, 827–832 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Shen, H. et al. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the Old Order Amish. Arch. Intern. Med. 170, 1850–1855 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wellcome Trust Case Control Consortium et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

  27. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Franzén, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Franceschini, N. et al. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat. Commun. 9, 5141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hao, K. et al. Integrative prioritization of causal genes for coronary artery disease. Circ. Genom. Precis. Med. 15, e003365 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, B. et al. Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci. Am. J. Hum. Genet. 103, 377–388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, Y., Sarkar, A., Kheradpour, P., Ernst, J. & Kellis, M. Evidence of reduced recombination rate in human regulatory domains. Genome Biol. 18, 193 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Turner, A. W. et al. Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk. Nat. Genet. 54, 804–816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen, J. et al. Regulation of vascular calcification by growth hormone-releasing hormone and its agonists. Circ. Res. 122, 1395–1408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun. Biol. 5, 1084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slenders, L. et al. Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis. Eur. Heart J. Open 2, oeab043 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van der Laan, S. W. et al. Genetic susceptibility loci for cardiovascular disease and their impact on atherosclerotic plaques. Circ. Genom. Precis. Med. 11, e002115 (2018).

    PubMed  Google Scholar 

  47. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tcheandjieu, C. et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat. Med. 28, 1679–1692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 27, R195–R208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Donovan, K. et al. Fibroblast growth factor-23 and risk of cardiovascular diseases: a Mendelian randomization study. Clin. J. Am. Soc. Nephrol. 18, 17–27 (2023).

    Article  PubMed  Google Scholar 

  52. Hall, K. T. et al. Catechol-O-methyltransferase and cardiovascular disease: MESA. J. Am. Heart Assoc. 8, e014986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nitschke, Y. et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am. J. Hum. Genet. 90, 25–39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ralph, D. et al. ENPP1 variants in patients with GACI and PXE expand the clinical and genetic heterogeneity of heritable disorders of ectopic calcification. PLoS Genet. 18, e1010192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 53, 185–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Herrera-Rivero, M. et al. Single- and multimarker genome-wide scans evidence novel genetic risk modifiers for venous thromboembolism. Thromb. Haemost. 121, 1169–1180 (2021).

    Article  PubMed  Google Scholar 

  57. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kato, N. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat. Genet. 47, 1282–1293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Thériault, S. et al. Identification of circulating proteins associated with blood pressure using Mendelian randomization. Circ. Genom. Precis. Med. 13, e002605 (2020).

    Article  PubMed  Google Scholar 

  61. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Hernandez Cordero, A. I. et al. Genome-wide associations reveal human-mouse genetic convergence and modifiers of myogenesis, CPNE1 and STC2. Am. J. Hum. Genet. 105, 1222–1236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, S. K. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE 13, e0200785 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schuler-Lüttmann, S. et al. Insulin-like growth factor-binding protein-3 is associated with the presence and extent of coronary arteriosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, e10–e15 (2000).

    Article  PubMed  Google Scholar 

  65. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Whitson, R. H. Jr, Li, S.-L., Zhang, G., Larson, G. P. & Itakura, K. Mice with Fabp4-Cre ablation of Arid5b are resistant to diet-induced obesity and hepatic steatosis. Mol. Cell. Endocrinol. 528, 111246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Watanabe, M. et al. Regulation of smooth muscle cell differentiation by AT-rich interaction domain transcription factors Mrf2α and Mrf2β. Circ. Res. 91, 382–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, G. et al. Genetic variations of Mrf-2/ARID5B confer risk of coronary atherosclerosis in the Japanese population. Int. Heart J. 49, 313–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, G. et al. Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population. J. Hum. Genet. 57, 727–733 (2012).

    Article  PubMed  Google Scholar 

  70. Hata, K. et al. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat. Commun. 4, 2850 (2013).

    Article  PubMed  Google Scholar 

  71. Paganelli, F., Gaudry, M., Ruf, J. & Guieu, R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc. Res. 117, 1284–1294 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Xu, Y. et al. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat. Commun. 8, 943 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang, M. et al. Ablation of myeloid ADK (adenosine kinase) epigenetically suppresses atherosclerosis in ApoE−/− (apolipoprotein E deficient) mice. Arterioscler. Thromb. Vasc. Biol. 38, 2780–2792 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kauffenstein, G. et al. Alteration of extracellular nucleotide metabolism in pseudoxanthoma elasticum. J. Invest. Dermatol. 138, 1862–1870 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boison, D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 65, 906–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ozkok, A. et al. FGF-23 associated with the progression of coronary artery calcification in hemodialysis patients. BMC Nephrol. 14, 241 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Murali, S. K. et al. FGF23 regulates bone mineralization in a 1,25(OH)2 D3 and Klotho-independent manner. J. Bone Miner. Res. 31, 129–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Donovan, K. et al. Fibroblast growth factor-23 and risk of cardiovascular diseases: a Mendelian randomisation study. Clin. J. Am. Soc. Nephrol. 18, 17–27 (2023).

    Article  PubMed  Google Scholar 

  79. Alexopoulos, N. & Raggi, P. Calcification in atherosclerosis. Nat. Rev. Cardiol. 6, 681–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Arbab-Zadeh, A. & Fuster, V. The myth of the ‘vulnerable plaque’: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 65, 846–855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schoenhagen, P. et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101, 598–603 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Mauriello, A. et al. Coronary calcification identifies the vulnerable patient rather than the vulnerable plaque. Atherosclerosis 229, 124–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Nicoll, R., Zhao, Y., Ibrahimi, P., Olivecrona, G. & Henein, M. Diabetes and hypertension consistently predict the presence and extent of coronary artery calcification in symptomatic patients: a systematic review and meta-analysis. Int. J. Mol. Sci. 17, 1481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Van der Toorn, J. E. et al. Arterial calcification at multiple sites: sex-specific cardiovascular risk profiles and mortality risk-the Rotterdam Study. BMC Med. 18, 263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kronmal, R. A. et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the multi-ethnic study of atherosclerosis (MESA). Circulation 115, 2722–2730 (2007).

    Article  PubMed  Google Scholar 

  86. Saleheen, D. et al. Loss of cardioprotective effects at the ADAMTS7 locus as a result of gene–smoking interactions. Circulation 135, 2336–2353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Polfus, L. M. et al. Genome-wide association study of gene by smoking interactions in coronary artery calcification. PLoS ONE 8, e74642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Winkler, T. W. et al. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. Bioinformatics 31, 259–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verhoeven, B. A. N. et al. Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur. J. Epidemiol. 19, 1127–1133 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Van Lammeren, G. W. et al. Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting. Stroke 42, 2550–2555 (2011).

    Article  PubMed  Google Scholar 

  97. Verhoeven, B. et al. Carotid atherosclerotic plaques in patients with transient ischemic attacks and stroke have unstable characteristics compared with plaques in asymptomatic and amaurosis fugax patients. J. Vasc. Surg. 42, 1075–1081 (2005).

    Article  PubMed  Google Scholar 

  98. Hellings, W. E. et al. Intraobserver and interobserver variability and spatial differences in histologic examination of carotid endarterectomy specimens. J. Vasc. Surg. 46, 1147–1154 (2007).

    Article  PubMed  Google Scholar 

  99. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lawlor, D. A. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int. J. Epidemiol. 45, 908–915 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bowden, J. & Holmes, M. V. Meta-analysis and Mendelian randomization: a review. Res. Synth. Methods 10, 486–496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e005349 (2018).

    Article  Google Scholar 

  109. Hartiala, J. A. et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. Heart J. 42, 919–933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01HL148239 and R01HL164577 to C.L.M.; R01HL142809 and R01HL159514 to R.M.; F31HL156463 to D.W.; R01HL125863 to J.L.M.B.; R01HL146860 to P.S.d.V., K01HL164687 to C.L.L.C., N.R.H., P.A.P. and L.F.B.; R01HL163972 to N.F.; P30DK063491 to J.I.R.; R01DK114183 to T.L.A.; European Union funded H2020 TO_AITION (grant 848146 to S.W.v.d.L.); Netherlands CardioVascular Research Initiative of the Netherlands Heart Foundation (CVON 2011/B019 and CVON 2017-20 (to S.W.v.d.L. and M.d.W.)—generating the best evidence-based pharmaceutical targets for atherosclerosis (GENIUS I&II)), the ERA-CVD program ‘druggable-MI-targets’ (01KL1802 to S.W.v.d.L.) and the Leducq Foundation (‘PlaqOmics’ 18CVD02 to C.L.M., J.L.M.B., G.P. and S.W.v.d.L.). The CHARGE Consortium was supported by NHLBI (grant R01HL105756). M.d.W. was supported by the Netherlands Heart Foundation and Spark-Holding BV (2019B016); Leducq Foundation (LEAN 16CVD01); Amsterdam UMC; ZonMW (Open Competition 09120011910025). A full list of the funding support for each study is provided in Supplementary Note. A full list of acknowledged funding support for individual studies is provided in Supplementary Table 23.

Author information

Authors and Affiliations

Authors

Contributions

C.L.M., D.M.B., J.E.H., J.I.R., L.C.B., L.J.L., M.J.B., M.K., M.M.B., P.A.P., R.M., S.W.v.d.L. and V.G were responsible for study concept and design. A.G.U., A.T.H., B.G.K., C.L.M., D.B., D.M.B., J.I.R., J.v.d.G., J.v.M., K.D.T., L.-P.L., L.C.B., L.F.B., L.S., M.J.B., M.M., M.W.V., P.A.P., Q.W., R.S., R.Z., S.L.R.K., S.W.v.d.L., T.L.A., V.G. and X.G. were responsible for phenotype data acquisition and/or QC. A.W.T., B.G.K., C.J.H., C.L.L.C., C.L.M., D.B., D.M.B., H.J.B., H.S., J.A.S., J.I.R., K.D.T., L.C.B., L.F.B., M.B., M.J.B., M.M., M.W.V., N.R.Z., P.A.P., S.L.R.K., S.W.v.d.L. and V.G. were responsible for data acquisition. A.T.H., A.V.S., C.J.H., C.L.M., D.W., E.H., H.J.B., H.L., J.D., K.A.Y., L.-P.L., L.F.B., L.P.L.L., L.R.Y., L.S., M.K., M.M., M.M.B., P.A.P., Q.W., S.C., S.M.L., S.W.v.d.L., T.L.A. and X.G. were responsible for statistical analysis and data interpretation. C.L.L.C., C.J.H., C.L.M., D.W., H.J.B., H.L., L.P.L.L., M.K., M.M.B., P.A.P. and S.W.v.d.L. were responsible for drafting the paper. A.G.U., A.T.H., A.V.S., A.W.T., B.G.K., B.M.P., C.J.H., C.J.O., C.L.L.C., C.L.M., D.B., D.M.B., D.W., E.D.B., E.H., H.J.B., H.L., H.M.d.R., H.S., J.A.S., J.C.B., J.C.K., J.D., J.E.H., J.I.R., J.L.M.B., J.v.d.G., J.v.M., J.v.S., K.A.Y., K.D.T., L.-P.L., L.A.L., L.C.B., L.F.B., L.J.L., L.P.L.L., L.R.Y., M.A.I., M.B., M.J.B., M.K., M. Kho, M.M.B., M.W.V., N.F., N.R.H., N.R.Z., P.A.P., P.E.S., P.S.d.V., Q.W., R.M., R.S., R.Z., S.C., S.L.R.K, S.M., S.M.L., S.W.v.d.L., T.L.A., V.G., W.S.P. and X.G. were responsible for critical revision of the paper. B.G.K., C.L.M., D.M.B., D.P.v.d.K., G.P., H.M.d.R., H.S., J.I.R., L.A.L., L.C.B., L.J.L., M.d.W., M.J.B., M.K., N.F., N.R.H., P.A.P., P.E.S., P.S.d.V., R.M., R.S., S.L.R.K., S.M., S.W.v.d.L. and V.G. were responsible for funding support. A.D.H., A.W.T., B.I.F., C.D.L., C.F., C.J.O., D.R.J., D.W.B., F.A.A.M.H., I.I., J.C.K., J.G.T., J.J.C., J.L.M.B., J.v.S., J.X., L.A.C., M.A.S., M.F., M.K., M.F.F., O.T.R., R.V., S.-J.H., S.C. and T.L. were responsible for additional resources and/or materials.

Corresponding authors

Correspondence to Maryam Kavousi or Clint L. Miller.

Ethics declarations

Competing interests

S.W.v.d.L. has received Roche funding for unrelated work. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. R.M. receives research funding from Angea Biotherapeutics and Amgen and serves as a consultant for Myokardia/BMS, Renovacor, Epizon Pharma and Third Pole, all unrelated to the current project. C.L.M. has received funding from AstraZeneca on an unrelated project. J.C.K. is the recipient of an Agilent Thought Leader Award (January 2022), which includes funding for research that is unrelated to the current paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Guillaume Lettre, Alexandre Stewart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Methods, Tables 1–23 and Figs. 1–9.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–23.

Source data

Source Data Fig. 6

Uncropped blots for RUsNX2 and GAPDH.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavousi, M., Bos, M.M., Barnes, H.J. et al. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 55, 1651–1664 (2023). https://doi.org/10.1038/s41588-023-01518-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01518-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing