Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of B cells in atherosclerosis

Abstract

The cardiovascular system is subject to hyperlipidaemic, inflammatory, and pro-oxidant stressors. Over time, these factors drive prevalent chronic diseases, of which atherosclerosis is most prominent and accounts for the majority of deaths globally. Antibody-producing B cells perform a unique role in responses to stress, injury, and infection. The power, inducibility, and adaptability of the antibody repertoire require an equally complex range of control measures. Defects and chronic perturbations in these checkpoints lead to inappropriate antibody responses, which might have important roles in shaping the development and outcome of atherosclerotic disease. A unique aspect related to atherosclerosis is the prominent role of natural antibodies, specifically those binding to the oxidized epitopes that are abundant on modified lipoproteins and cellular debris. B cells control cellular immune responses through cell–cell contact, antigen presentation, and cytokine production, and thereby participate in systemic and local immune responses in atherosclerotic arteries. To date, both proatherogenic and antiatherogenic properties have been assigned to B cells, depending on subsets and how they are functionally targeted. For these reasons, a deeper understanding of how B cells influence atherosclerotic plaque development is being pursued with the hope of providing novel B cell-targeted interventions to prevent inflammation-driven cardiovascular events.

Key points

  • Atherosclerosis is associated with both innate and adaptive immune responses.

  • Inflammation in atherosclerosis is mainly driven by neo (self-)epitopes present on LDL and dying cells, which are both recognized by natural antibodies.

  • B cell responses targeting oxidation-specific epitopes might limit disease, whereas other antibodies might have pathogenic consequences.

  • Antibody-independent roles for B cells, such as cytokine production and T cell regulation, also contribute to B cell control of atherosclerosis.

  • B cell-depletion therapies and vaccination strategies show promise; however, more-precise targeting of different B cell functions is an important future goal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B cell effector mechanisms in atherosclerotic plaques.
Fig. 2: B cell responses in lymphoid organs that regulate atherosclerosis.

Similar content being viewed by others

References

  1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

    Google Scholar 

  2. Libby, P., Lichtman, A. H. & Hansson, G. K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38, 1092–1104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    PubMed  Google Scholar 

  4. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    CAS  PubMed  Google Scholar 

  5. Tsiantoulas, D., Diehl, C. J., Witztum, J. L. & Binder, C. J. B cells and humoral immunity in atherosclerosis. Circ. Res. 114, 1743–1756 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yahagi, K. et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat. Rev. Cardiol. 13, 79–98 (2015).

    PubMed  Google Scholar 

  7. Hansson, G. K., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Houtkamp, M. A., de Boer, O. J., van der Loos, C. M., van der Wal, A. C. & Becker, A. E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol. 193, 263–269 (2001).

    CAS  PubMed  Google Scholar 

  9. Moos, M. P. et al. The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 2386–2391 (2005).

    CAS  PubMed  Google Scholar 

  10. Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    CAS  PubMed  Google Scholar 

  11. Song, L., Leung, C. & Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Invest. 108, 251–259 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Reardon, C. A., Blachowicz, L., Lukens, J., Nissenbaum, M. & Getz, G. S. Genetic background selectively influences innominate artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 1449–1454 (2003).

    CAS  PubMed  Google Scholar 

  13. Skaggs, B. J., Hahn, B. H. & McMahon, M. Accelerated atherosclerosis in patients with SLE—mechanisms and management. Nat. Rev. Rheumatol. 8, 214–223 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  Google Scholar 

  15. Tsiantoulas, D., Sage, A. P., Mallat, Z. & Binder, C. J. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler. Thromb. Vasc. Biol. 35, 296–302 (2015).

    CAS  PubMed  Google Scholar 

  16. Srikakulapu, P. & McNamara, C. B. Cells and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 312, H1060–H1067 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Hardy, R. R., Kincade, P. W. & Dorshkind, K. The protean nature of cells in the B lymphocyte lineage. Immunity 26, 703–714 (2007).

    CAS  PubMed  Google Scholar 

  18. Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 14, 69–80 (2014).

    CAS  PubMed  Google Scholar 

  19. Schatz, D. G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251–263 (2011).

    CAS  PubMed  Google Scholar 

  20. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    CAS  PubMed  Google Scholar 

  21. Anthony, R. M., Wermeling, F. & Ravetch, J. V. Novel roles for the IgG Fc glycan. Ann. NY Acad. Sci. 1253, 170–180 (2012).

    CAS  PubMed  Google Scholar 

  22. Menni, C. et al. Glycosylation profile of immunoglobulin G is cross-sectionally associated with cardiovascular disease risk score and subclinical atherosclerosis in two independent cohorts. Circ. Res. 122, 1555–1564 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).

    CAS  PubMed  Google Scholar 

  24. Hardy, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Curr. Opin. Immunol. 18, 547–555 (2006).

    CAS  PubMed  Google Scholar 

  25. Baumgarth, N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front. Immunol. 7, 324 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Choi, Y., Dieter, J. A., Rothaeusler, K., Luo, Z. & Baumgarth, N. B-1 cells in the bone marrow are a significant source of natural IgM. Eur. J. Immunol. 42, 120–129 (2012).

    CAS  PubMed  Google Scholar 

  27. Griffin, D. O., Holodick, N. E. & Rothstein, T. L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70. J. Exp. Med. 208, 67–80 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Muppidi, J. R. et al. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. J. Exp. Med. 208, 1941–1948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Palm, A.-K. E., Friedrich, H. C. & Kleinau, S. Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity. Sci. Rep. 6, 27687 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tas, J. M. J. et al. Visualizing antibody affinity maturation in germinal centers. Science 351, 1048–1054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Corcoran, L. M. & Tarlinton, D. M. Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr. Opin. Immunol. 39, 59–67 (2016).

    CAS  PubMed  Google Scholar 

  33. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009).

    CAS  PubMed  Google Scholar 

  34. Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. & Shlomchik, M. J. A. Temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44, 116–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reynolds, A. E., Kuraoka, M. & Kelsoe, G. Natural IgM is produced by CD5- plasma cells that occupy a distinct survival niche in bone marrow. J. Immunol. 194, 231–242 (2015).

    CAS  PubMed  Google Scholar 

  36. Montecino-Rodriguez, E. et al. Distinct genetic networks orchestrate the emergence of specific waves of fetal and adult B-1 and B-2 development. Immunity 45, 527–539 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanigaki, K. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3, 443–450 (2002).

    CAS  PubMed  Google Scholar 

  38. Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    CAS  PubMed  Google Scholar 

  39. von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol. 11, 14–20 (2009).

    Google Scholar 

  40. Chan, T. D. et al. Elimination of germinal-center-derived self-reactive B cells is governed by the location and concentration of self-antigen. Immunity 37, 893–904 (2012).

    CAS  PubMed  Google Scholar 

  41. Malkiel, S., Barlev, A. N., Atisha-Fregoso, Y., Suurmond, J. & Diamond, B. Plasma cell differentiation pathways in systemic lupus erythematosus. Front. Immunol. 9, 427 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Knoflach, M., Behard, D. & Wick, G. Anti-HSP60 immunity is already associated with atherosclerosis early in life. Ann. NY Acad. Sci. 1051, 323–331 (2005).

    CAS  PubMed  Google Scholar 

  43. Grundtman, C. et al. Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis 242, 303–310 (2015).

    CAS  PubMed  Google Scholar 

  44. Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med. 199, 1121–1131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng, X. et al. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J. Lipid Res. 48, 794–805 (2007).

    CAS  PubMed  Google Scholar 

  46. Gautier, E. L. et al. Enhanced immune system activation and arterial inflammation accelerates atherosclerosis in lupus-prone mice. Arterioscler. Thromb. Vasc. Biol. 27, 1625–1631 (2007).

    CAS  PubMed  Google Scholar 

  47. Stanic, A. K. et al. Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 103, 7018–7023 (2006).

    CAS  PubMed  Google Scholar 

  48. Lewis, M. J. et al. Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia. Arthritis Rheum. 64, 2707–2718 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Temmerman, L. et al. Leukocyte Bim deficiency does not impact atherogenesis in Ldlr −/− mice, despite a pronounced induction of autoimmune inflammation. Sci. Rep. 7, 3086 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Konstantinov, I. E., Mejevoi, N. & Anichkov, N. M. Nikolai, N. Anichkov and his theory of atherosclerosis. Tex. Heart Inst. J. 33, 417–423 (2006).

    PubMed  PubMed Central  Google Scholar 

  51. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hollander, W., Colombo, M. A., Kirkpatrick, B. & Paddock, J. Soluble proteins in the human atheroschlerotic plaque with spectral reference to immunoglobulins, C3-complement component, α1-antitrypsin and α2-macroglobulin. Atherosclerosis 34, 391–405 (1979).

    CAS  PubMed  Google Scholar 

  53. Hansson, G. K., Bondjers, G., Bylock, A. & Hjalmarsson, L. Ultrastructural studies on the localization of IgG in the aortic endothelium and subendothelial intima of atherosclerotic and nonatherosclerotic rabbits. Exp. Mol. Pathol. 33, 302–315 (1980).

    CAS  PubMed  Google Scholar 

  54. Parums, D. & Mitchinson, M. J. Demonstration of immunoglobulin in the neighbourhood of advanced atherosclerotic plaques. Atherosclerosis 38, 211–216 (1981).

    CAS  PubMed  Google Scholar 

  55. Vlaicu, R., Rus, H. G., Niculescu, F. & Cristea, A. Immunoglobulins and complement components in human aortic atherosclerotic intima. Atherosclerosis 55, 35–50 (1985).

    CAS  PubMed  Google Scholar 

  56. Ylä-Herttuala, S. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. Vasc. Biol. 14, 32–40 (1994).

    Google Scholar 

  57. Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest. 98, 800–814 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem. 275, 9163–9169 (2000).

    CAS  PubMed  Google Scholar 

  60. Friedman, P., Hörkkö, S., Steinberg, D., Witztum, J. L. & Dennis, E. A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids: importance of schiff base formation and aldol condensation. J. Biol. Chem. 277, 7010–7020 (2002).

    CAS  PubMed  Google Scholar 

  61. Hamze, M. et al. Characterization of resident B cells of vascular walls in human atherosclerotic patients. J. Immunol. 191, 3006–3016 (2013).

    CAS  PubMed  Google Scholar 

  62. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    CAS  PubMed  Google Scholar 

  63. Huan, T. et al. A systems biology framework identifies molecular underpinnings of coronary heart disease significance. Arterioscler. Thromb. Vasc. Biol. 33, 1427–1434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mantani, P. T. et al. Circulating CD40+ and CD86+ B cell subsets demonstrate opposing associations with risk of stroke. Arterioscler. Thromb. Vasc. Biol. 34, 211–218 (2014).

    CAS  PubMed  Google Scholar 

  65. Meeuwsen, J. A. L. et al. High levels of (Un)switched memory B cells are associated with better outcome in patients with advanced atherosclerotic disease. J. Am. Heart Assoc. 6, e005747 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G. K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109, 745–753 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Major, A. S., Fazio, S. & Linton, M. F. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 22, 1892–1898 (2002).

    CAS  PubMed  Google Scholar 

  68. Muscari, A. et al. Association of serum IgA and C4 with severe atherosclerosis. Atherosclerosis 74, 179–186 (1988).

    CAS  PubMed  Google Scholar 

  69. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42, 1100–1115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 1174–1185 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dunér, P. et al. Increased aldehyde-modification of collagen type IV in symptomatic plaques – a possible cause of endothelial dysfunction. Atherosclerosis 240, 26–32 (2015).

    PubMed  Google Scholar 

  72. Vallejo, J., Duner, P., Fredrikson, G. N., Nilsson, J. & Bengtsson, E. Autoantibodies against aldehyde-modified collagen type IV are associated with risk of development of myocardial infarction. J. Intern. Med. 282, 496–507 (2017).

    CAS  PubMed  Google Scholar 

  73. Engelbertsen, D. et al. Low levels of IgM antibodies against an advanced glycation endproduct-modified apolipoprotein B100 peptide predict cardiovascular events in nondiabetic subjects. J. Immunol. 195, 3020–3025 (2015).

    CAS  PubMed  Google Scholar 

  74. Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kortelainen, M.-L. & Porvari, K. Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis. Cardiovasc. Pathol. 23, 193–197 (2014).

    CAS  PubMed  Google Scholar 

  76. Liang, K. P. et al. Autoantibodies and the risk of cardiovascular events. J. Rheumatol 36, 2462–2469 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Cambridge, G., Acharya, J., Cooper, J. A., Edwards, J. C. & Humphries, S. E. Antibodies to citrullinated peptides and risk of coronary heart disease. Atherosclerosis 228, 243–246 (2013).

    CAS  PubMed  Google Scholar 

  78. Huang, Y. et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat. Med. 20, 193–203 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Montecucco, F. et al. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb. Haemost. 114, 410–422 (2015).

    CAS  PubMed  Google Scholar 

  80. Pagano, S. et al. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J. Intern. Med. 272, 344–357 (2012).

    CAS  PubMed  Google Scholar 

  81. George, J., Afek, A., Gilburd, B., Shoenfeld, Y. & Harats, D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol. 38, 900–905 (2001).

    CAS  PubMed  Google Scholar 

  82. Merched, A. J., Daret, D., Li, L., Franzl, N. & Sauvage-Merched, M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis. FASEB J. 30, 2123–2134 (2016).

    CAS  PubMed  Google Scholar 

  83. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kubagawa, H. et al. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 206, 2779–2793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Brenner, D. et al. Toso controls encephalitogenic immune responses by dendritic cells and regulatory T cells. Proc. Natl Acad. Sci. USA 111, 1060–1065 (2014).

    CAS  PubMed  Google Scholar 

  86. Tsiantoulas, D. et al. Secreted IgM deficiency leads to increased BCR signaling that results in abnormal splenic B cell development. Sci. Rep. 7, 3540 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Notley, C. A., Baker, N. & Ehrenstein, M. R. Secreted IgM enhances B cell receptor signaling and promotes splenic but impairs peritoneal B cell survival. J. Immunol. 184, 3386–3393 (2010).

    CAS  PubMed  Google Scholar 

  88. Gonen, A. et al. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine. J. Lipid Res. 55, 2137–2155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Khoo, L., Thiam, C., Soh, S. & Angeli, V. Splenic extrafollicular reactions and BM plasma cells sustain IgM response associated with hypercholesterolemia. Eur. J. Immunol. 45, 1300–1312 (2015).

    CAS  PubMed  Google Scholar 

  91. Chou, M.-Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2009).

    PubMed  PubMed Central  Google Scholar 

  93. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2007).

    Google Scholar 

  94. Iseme, R. A. et al. A role for autoantibodies in atherogenesis. Cardiovasc. Res. 113, 1102–1112 (2017).

    CAS  PubMed  Google Scholar 

  95. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736 (2003).

    CAS  PubMed  Google Scholar 

  97. Faria-Neto, J. R. et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189, 83–90 (2006).

    CAS  PubMed  Google Scholar 

  98. Cesena, F. H. et al. Immune-modulation by polyclonal IgM treatment reduces atherosclerosis in hypercholesterolemic apoE−/− mice. Atherosclerosis 220, 59–65 (2012).

    CAS  PubMed  Google Scholar 

  99. Busch, C. J. et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology 65, 1181–1195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Centa, M. et al. Atherosclerosis susceptibility in mice is independent of the V1 immunoglobulin heavy chain gene. Arterioscler. Thromb. Vasc. Biol. 36, 25–36 (2016).

    CAS  PubMed  Google Scholar 

  101. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gruber, S. et al. Sialic acid-binding immunoglobulin-like Lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells. Cell Rep. 14, 2348–2361 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    CAS  PubMed  Google Scholar 

  104. Hosseini, H. et al. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc. Res. 106, 443–452 (2015).

    CAS  PubMed  Google Scholar 

  105. Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res. 109, 830–840 (2011).

    CAS  PubMed  Google Scholar 

  106. Khamis, R. Y. et al. High serum immunoglobulin G and M levels predict freedom from adverse cardiovascular events in hypertension: a nested case-control substudy of the anglo-scandinavian cardiac outcomes trial. EBioMedicine 9, 372–380 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120, 417–426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsiantoulas, D. et al. Increased plasma IgE accelerate atherosclerosis in secreted IgM deficiency. Circ. Res. 120, 78–84 (2017).

    CAS  PubMed  Google Scholar 

  109. Perry, H. M. et al. Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler. Thromb. Vasc. Biol. 33, 2771–2779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat. Commun. 8, 15781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Miller, A. M. et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205, 339–346 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Martin, P. et al. Atherosclerosis severity is not affected by a deficiency in IL-33/ST2 signaling. Immun. Inflamm. Dis. 3, 239–246 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sämpi, M. et al. Plasma interleukin-5 levels are related to antibodies binding to oxidized low-density lipoprotein and to decreased subclinical atherosclerosis. J. Am. Coll. Cardiol. 52, 1370–1378 (2008).

    PubMed  Google Scholar 

  114. Engelbertsen, D. et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler. Thromb. Vasc. Biol. 33, 637–644 (2013).

    CAS  PubMed  Google Scholar 

  115. Sage, A. P. et al. X-box binding protein-1 dependent plasma cell responses limit the development of atherosclerosis. Circ. Res. 121, 270–281 (2017).

    CAS  PubMed  Google Scholar 

  116. Rahman, M. et al. IgM antibodies against malondialdehyde and phosphorylcholine are together strong protection markers for atherosclerosis in systemic lupus erythematosus: regulation and underlying mechanisms. Clin. Immunol. 166–167, 27–37 (2016).

    PubMed  Google Scholar 

  117. Engelbertsen, D. et al. Induction of T helper 2 responses against human apolipoprotein B100 does not affect atherosclerosis in ApoE −/− mice. Cardiovasc. Res. 103, 304–312 (2014).

    CAS  PubMed  Google Scholar 

  118. Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nat. Rev. Immunol. 8, 205–217 (2008).

    CAS  PubMed  Google Scholar 

  119. Bot, I. et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E–deficient mice. Circulation 115, 2516–2525 (2007).

    CAS  PubMed  Google Scholar 

  120. Sun, J. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med. 13, 719–724 (2007).

    CAS  PubMed  Google Scholar 

  121. Wezel, A. et al. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis 241, 289–296 (2015).

    CAS  PubMed  Google Scholar 

  122. Wang, K.-Y. et al. Histamine deficiency decreases atherosclerosis and inflammatory response in apolipoprotein E knockout mice independently of serum cholesterol level. Arterioscler. Thromb. Vasc. Biol. 31, 800–807 (2011).

    CAS  PubMed  Google Scholar 

  123. Wang, J. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe −/− mice. J. Clin. Invest. 121, 3564–3577 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801–811 (2001).

    CAS  PubMed  Google Scholar 

  125. Pandey, V., Mihara, S., Fensome-Green, A., Bolsover, S. & Cockcroft, S. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca2+, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line. J. Immunol. 172, 4048–4058 (2004).

    CAS  PubMed  Google Scholar 

  126. Prasad, A. et al. Relationship of autoantibodies to MDA-LDL and ApoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Arterioscler. Thromb. Vasc. Biol. 37, 1213–1221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mayr, M. et al. Oxidized low-density lipoprotein autoantibodies, chronic infections, and carotid atherosclerosis in a population-based study. J. Am. Coll. Cardiol. 47, 2436–2443 (2006).

    CAS  PubMed  Google Scholar 

  128. Nilsson, J. Can antibodies protect us against cardiovascular disease? EBioMedicine 9, 29–30 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Saad, A. F., Virella, G., Chassereau, C., Boackle, R. J. & Lopes-Virella, M. F. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J. Lipid Res. 47, 1975–1983 (2006).

    CAS  PubMed  Google Scholar 

  130. Lennartz, M. R. et al. Ligation of macrophage Fcγ receptors recapitulates the gene expression pattern of vulnerable human carotid plaques. PLOS ONE 6, e21803 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rhoads, J. P. et al. Oxidized low-density lipoprotein immune complex priming of the Nlrp3 inflammasome involves TLR and FcγR cooperation and is dependent on CARD9. J. Immunol. 198, 2105–2114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ravandi, A. et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. J. Lipid Res. 52, 1829–1836 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).

    CAS  PubMed  Google Scholar 

  134. Klimov, A. N. et al. Lipoprotein-antibody immune complexes their catabolism and role in foam cell formation. Atherosclerosis 58, 1–15 (1985).

    CAS  PubMed  Google Scholar 

  135. Jackson, S. W. et al. Cutting edge: BAFF overexpression reduces atherosclerosis via TACI-dependent B cell activation. J. Immunol. 197, 4529–4534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tsimikas, S. et al. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation 110, 1406–1412 (2004).

    CAS  PubMed  Google Scholar 

  137. Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92, 821–825 (1995).

    CAS  PubMed  Google Scholar 

  138. Freigang, S., Horkko, S., Miller, E., Witztum, J. L. & Palinski, W. Immunization of LDL receptor deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18, 1972–1982 (1998).

    CAS  PubMed  Google Scholar 

  139. Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 946–952 (2010).

    CAS  PubMed  Google Scholar 

  140. Herbin, O. et al. Regulatory T cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 605–612 (2012).

    CAS  PubMed  Google Scholar 

  141. Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler. Thromb. Vasc. Biol. 38, e71–e84 (2018).

    CAS  PubMed  Google Scholar 

  142. Clement, M. et al. Control of the T follicular helper-germinal center B cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    CAS  PubMed  Google Scholar 

  143. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    CAS  PubMed  Google Scholar 

  144. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Centa, M. et al. Acute loss of apolipoprotein E triggers an autoimmune response that accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 38, e145–e158 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kelly, J. A. et al. Inhibition of arterial lesion progression in CD16-deficient mice: evidence for altered immunity and the role of IL-10. Cardiovasc. Res. 85, 224–231 (2010).

    CAS  PubMed  Google Scholar 

  147. Zhu, X. et al. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice. J. Immunol. 193, 2483–2495 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ng, H. P., Burris, R. L. & Nagarajan, S. Attenuated atherosclerotic lesions in apoE-Fcγ-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells. J. Immunol. 187, 6082–6093 (2011).

    CAS  PubMed  Google Scholar 

  149. Mallavia, B. et al. Gene deficiency in activating Fcγ receptors influences the macrophage phenotypic balance and reduces atherosclerosis in mice. PLOS ONE 8, e66754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Clement, M. et al. Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation 134, 1039–1051 (2016).

    CAS  PubMed  Google Scholar 

  151. Smith, K. G. C. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jonsson, S. et al. Identification of sequence variants influencing immunoglobulin levels. Nat. Genet. 49, 1182–1191 (2017).

    CAS  PubMed  Google Scholar 

  153. Harmon, E. Y. et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcgammaRIIb−/− mice develop fibrous carotid plaques. J. Am. Heart Assoc. 3, e001232 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    CAS  PubMed  Google Scholar 

  156. Kyaw, T. et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE−/− mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLOS ONE 7, e29371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice—brief report. Arterioscler. Thromb. Vasc. Biol. 32, 1573–1576 (2012).

    CAS  PubMed  Google Scholar 

  158. Ponnuswamy, P. et al. Angiotensin II synergizes with BAFF to promote atheroprotective regulatory B cells. Sci. Rep. 7, 4111 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Misumi, I. & Whitmire, J. K. B. Cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J. Immunol. 192, 1597–1608 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Zeng, Q. et al. B cells mediate chronic allograft rejection independently of antibody production. J. Clin. Invest. 124, 1052–1056 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129, 1677–1687 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Clement, M. et al. Deletion of IRF8 (interferon regulatory factor 8)-dependent dendritic cells abrogates proatherogenic adaptive immunity. Circ. Res. 122, 813–820 (2018).

    CAS  PubMed  Google Scholar 

  163. Allman, W. R. et al. TACI deficiency leads to alternatively activated macrophage phenotype and susceptibility to Leishmania infection. Proc. Natl Acad. Sci. USA 112, E4094–E4103 (2015).

    CAS  PubMed  Google Scholar 

  164. Tay, C. et al. B cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc. Res. 111, 385–397 (2016).

    CAS  PubMed  Google Scholar 

  165. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    CAS  PubMed  Google Scholar 

  166. Gjurich, B. N., Taghavie-Moghadam, P. L., Ley, K. & Galkina, E. V. L-Selectin deficiency decreases aortic B1a and Breg subsets and promotes atherosclerosis. Thromb. Haemost. 112, 803–811 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. Sage, A. P. et al. Regulatory B cell-specific interleukin-10 is dispensable for atherosclerosis development in mice. Arterioscler. Thromb. Vasc. Biol. 35, 1770–1773 (2015).

    CAS  PubMed  Google Scholar 

  168. Strom, A. C. et al. B regulatory cells are increased in hypercholesterolaemic mice and protect from lesion development via IL-10. Thromb. Haemost. 114, 835–847 (2015).

    PubMed  Google Scholar 

  169. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    CAS  PubMed  Google Scholar 

  170. Chang, S. K., Arendt, B. K., Darce, J. R., Wu, X. & Jelinek, D. F. A role for BLyS in the activation of innate immune cells. Blood 108, 2687–2694 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Tsiantoulas, D. et al. BAFF neutralization aggravates atherosclerosis. Circulation https://doi.org/10.1161/CIRCULATIONAHA.117.032790 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nat. Immunol. 2, 638–643 (2001).

    CAS  PubMed  Google Scholar 

  173. Bossen, C. et al. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 111, 1004–1012 (2008).

    CAS  PubMed  Google Scholar 

  174. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    CAS  PubMed  Google Scholar 

  175. Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl Acad. Sci. USA 101, 3903–3908 (2004).

    CAS  PubMed  Google Scholar 

  176. McCarron, M. J., Park, P. & Fooksman, D. R. CD138 mediates selection of mature plasma cells by regulating their survival. Blood 129, 2749–2759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Moens, S. J. et al. Impact of the B cell growth factor APRIL on the qualitative and immunological characteristics of atherosclerotic plaques. PLOS ONE 11, e0164690 (2016).

    Google Scholar 

  178. Browning, J. L. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat. Rev. Drug Discov. 5, 564–576 (2006).

    CAS  PubMed  Google Scholar 

  179. Sage, A. P. & Mallat, Z. Readapting the adaptive immune response – therapeutic strategies for atherosclerosis. Br. J. Pharmacol. 174, 3926–3939 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ketelhuth, D. F. J. & Hansson, G. K. Modulation of autoimmunity and atherosclerosis – common targets and promising translational approaches against disease. Circ. J. 79, 924–933 (2015).

    CAS  PubMed  Google Scholar 

  181. Scott, S. D. Rituximab: a new therapeutic monoclonal antibody for non-Hodgkin’s lymphoma. Cancer Pract. 6, 195–197 (1998).

    CAS  PubMed  Google Scholar 

  182. Edwards, J. et al. Efficacy of B-cell–targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    CAS  PubMed  Google Scholar 

  183. Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor–dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 199, 1659–1669 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Morris-Rosenfeld, S., Lipinski, M. J. & McNamara, C. A. Understanding the role of B cells in atherosclerosis: potential clinical implications. Expert Rev. Clin. Immunol. 10, 77–89 (2013).

    PubMed  PubMed Central  Google Scholar 

  186. Novikova, D. S. et al. The effects of rituximab on lipids, arterial stiffness and carotid intima-media thickness in rheumatoid arthritis. J. Kor. Med. Sci. 31, 202–207 (2015).

    Google Scholar 

  187. Kerekes, G. et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin. Rheumatol. 28, 705–710 (2009).

    PubMed  Google Scholar 

  188. Manzi, S. et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann. Rheum. Dis. 71, 1833–1838 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Hahn, B. Belimumab for systemic lupus erythematosus. N. Engl. J. Med. 368, 1528–1535 (2013).

    CAS  PubMed  Google Scholar 

  190. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Tattersall, M. C. et al. Late-onset asthma predicts cardiovascular disease events: the Wisconsin Sleep Cohort. J. Am. Heart Assoc. 5, e003448 (2016).

    PubMed  PubMed Central  Google Scholar 

  192. Tattersall, M. C. et al. Asthma predicts cardiovascular disease events: the multi-ethnic study of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 1520–1525 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Knoflach, M. et al. Allergic rhinitis, asthma, and atherosclerosis in the Bruneck and ARMY Studies. Arch. Intern. Med. 165, 2521–2526 (2005).

    PubMed  Google Scholar 

  194. Dema, B. et al. Immunoglobulin E plays an immunoregulatory role in lupus. J. Exp. Med. 211, 2159–2168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Dema, B. et al. Autoreactive IgE is prevalent in systemic lupus erythematosus and is associated with increased disease activity and nephritis. PLOS ONE 9, e90424 (2014).

    PubMed  PubMed Central  Google Scholar 

  196. Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).

    CAS  PubMed  Google Scholar 

  197. Poulsen, C. B. et al. Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions. Int. J. Cardiol. 215, 506–515 (2016).

    PubMed  Google Scholar 

  198. Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase ii study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imag. 8, 493–494 (2015).

    Google Scholar 

  199. Chyu, K.-Y., Dimayuga, P. C. & Shah, P. K. Vaccine against arteriosclerosis: an update. Ther. Adv. Vaccines 5, 39–47 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Caligiuri, G. et al. Phosphorylcholine-targeting immunization reduces atherosclerosis. J. Am. Coll. Cardiol. 50, 540–546 (2007).

    CAS  PubMed  Google Scholar 

  201. Ren, S. et al. Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart 2, e000247 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    CAS  PubMed  Google Scholar 

  203. Taubenheim, N. et al. High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency. J. Immunol. 189, 3328–3338 (2012).

    CAS  PubMed  Google Scholar 

  204. Bromage, E., Stephens, R. & Hassoun, L. The third dimension of ELISPOTs: quantifying antibody secretion from individual plasma cells. J. Immunol. Methods 346, 75–79 (2009).

    CAS  PubMed  Google Scholar 

  205. Shi, W. et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol. 16, 663–673 (2015).

    CAS  PubMed  Google Scholar 

  206. Chu, V. T. & Berek, C. The establishment of the plasma cell survival niche in the bone marrow. Immunol. Rev. 251, 177–188 (2013).

    PubMed  Google Scholar 

  207. Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol. 8, 419–429 (2007).

    CAS  PubMed  Google Scholar 

  208. Doran, A. C. et al. B cell aortic homing and atheroprotection depend on Id3. Circ. Res. 110, e1–e12 (2012).

    CAS  PubMed  Google Scholar 

  209. Kyaw, T. et al. BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE−/− mice. PLOS ONE 8, e60430 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Rosenfeld, S. M. et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ. Res. 117, e28–e39 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Meiler, S. et al. Constitutive GITR activation reduces atherosclerosis by promoting regulatory CD4+ T-cell responses-brief report. Arterioscler. Thromb. Vasc. Biol. 36, 1748–1752 (2016).

    CAS  PubMed  Google Scholar 

  212. Karvonen, J., Päivänsalo, M., Kesäniemi, A. Y. & Hörkkö, S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation 108, 2107–2112 (2003).

    CAS  PubMed  Google Scholar 

  213. Wilson, P. W. F. et al. Autoantibodies to oxidized LDL and cardiovascular risk: the Framingham Offspring Study. Atherosclerosis 189, 364–368 (2006).

    CAS  PubMed  Google Scholar 

  214. Bjorkbacka, H. et al. Low levels of apolipoprotein B-100 autoantibodies are associated with increased risk of coronary events. Arterioscler. Thromb. Vasc. Biol. 36, 765–771 (2016).

    PubMed  Google Scholar 

  215. Tsimikas, S. et al. Increased plasma oxidized phospholipid:apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering. Arterioscler. Thromb. Vasc. Biol. 27, 175–181 (2007).

    CAS  PubMed  Google Scholar 

  216. Fredrikson, G. N. et al. Association between IgM against an aldehyde-modified peptide in apolipoprotein B-100 and progression of carotid disease. Stroke 38, 1495–1500 (2007).

    CAS  PubMed  Google Scholar 

  217. Kankaanpaa, J. et al. IgA antibodies to phosphocholine associate with long-term cardiovascular disease risk. Atherosclerosis 269, 294–300 (2018).

    CAS  PubMed  Google Scholar 

  218. de Faire, U. et al. Low levels of IgM antibodies to phosphorylcholine predict cardiovascular disease in 60-year old men: effects on uptake of oxidized LDL in macrophages as a potential mechanism. J. Autoimmun. 34, 73–79 (2010).

    PubMed  Google Scholar 

  219. Caidahl, K. et al. IgM-phosphorylcholine autoantibodies and outcome in acute coronary syndromes. Int. J. Cardiol. 167, 464–469 (2013).

    PubMed  Google Scholar 

  220. Imhof, A. et al. Long-term prognostic value of IgM antibodies against phosphorylcholine for adverse cardiovascular events in patients with stable coronary heart disease. Atherosclerosis 243, 414–420 (2015).

    CAS  PubMed  Google Scholar 

  221. Anania, C. et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthrit. Res. Ther. 12, 1–8 (2010).

    Google Scholar 

  222. Fernández-Gutiérrez, B. et al. Cardiovascular disease in immune-mediated inflammatory diseases: a cross-sectional analysis of 6 cohorts. Medicine 96, e7308 (2017).

    PubMed  PubMed Central  Google Scholar 

  223. Berendsen, M. L. T. et al. Anticyclic citrullinated peptide antibodies and rheumatoid factor as risk factors for 10-year cardiovascular morbidity in patients with rheumatoid arthritis: a large inception cohort study. J. Rheumatol 44, 1325–1330 (2017).

    CAS  PubMed  Google Scholar 

  224. Antiochos, P. et al. Impact of CD14 polymorphisms on anti-apolipoprotein A-1 IgG-related coronary artery disease prediction in the general population. Arterioscler. Thromb. Vasc. Biol. 37, 2342–2349 (2017).

    CAS  PubMed  Google Scholar 

  225. Kounis, N. G. & Hahalis, G. Serum IgE levels in coronary artery disease. Atherosclerosis 251, 498–500 (2016).

    CAS  PubMed  Google Scholar 

  226. Lippi, G., Cervellin, G. & Sanchis-Gomar, F. Immunoglobulin E (IgE) and ischemic heart disease. Which came first, the chicken or the egg? Ann. Med. 46, 456–463 (2014).

    CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Cardiology thanks K. Ley, J. Nilsson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, and reviewed and edited the manuscript before submission. A.P.S. and D.T. wrote the manuscript.

Corresponding author

Correspondence to Andrew P. Sage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Oxidation-specific epitopes

(OSEs). Lipid moieties, such as malondialdehyde and phosphorylcholine, often found as adducts on biological molecules as a result of oxidative modification.

B cell receptors

(BCRs). The surface antibody proteins expressed by each B cell clone. Each clone expresses a unique BCR that derives from random recombination of germline variable region genes.

Plasma cells

Specialized B cell-derived postmitotic cells with high protein synthesis and secretion capacity that secrete high amounts of soluble antibodies into the bloodstream.

Marginal zone

(MZ). A specialized region of the spleen on the border of the white and red pulp that functions to monitor and filter the blood. The marginal zone is populated by specialized B cell and macrophage subsets.

Germinal centre

(GC). A localized region of a follicle of a lymphoid organ that arises when antigen-specific B2 cells and T cells combine; B2 cells proliferate rapidly as GC B cells.

Class switching

An individual activated B cell clone undergoes recombination at the B cell receptor genomic locus resulting in different constant (Fc) region usage and production of a new class (isotype) of antibody.

Affinity maturation

Germinal centre B cell clones reactive to a certain antigen hypermutate the B cell receptor variable region and, via competitive evolution and natural selection, clones with progressively higher affinity for the antigen emerge.

Antibody-secreting cells

A term that encompasses any B cell that secretes soluble antibodies, including plasmablasts, B1 cells, and plasma cells.

Ldlr −/− mice

LDL receptor-deficient mice are a model of atherosclerosis when fed high-cholesterol and high-fat diets owing to the inability of the liver to take up LDL.

Natural antibodies

Antibodies, mostly of IgM, IgA, and/or IgG3 isotypes, that arise early in life independently of the presence of microorganisms.

Apoe −/− mice

Apolipoprotein E is the ligand for the LDL receptor and Apoe-knockout mice have high levels of circulating cholesterol (VLDL and triglycerides), in addition to defects in phagocytosis; they are a widely used model of atherosclerosis.

Immune complexes

Molecular aggregates of antibodies and their cognate antigen. Immune complex formation is often (but not always) necessary for activation of downstream antibody effector functions.

B cell activating factor

(BAFF). Essential for B2 cell development and important in many aspects of B cell physiology but also regulates other cell types such as macrophages.

B cell-depletion therapy

Therapy that comprises a class of monoclonal antibodies that target B cell-specific surface molecules and so result in antibody-dependent cell cytotoxicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sage, A.P., Tsiantoulas, D., Binder, C.J. et al. The role of B cells in atherosclerosis. Nat Rev Cardiol 16, 180–196 (2019). https://doi.org/10.1038/s41569-018-0106-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0106-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing