Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How the immune system shapes atherosclerosis: roles of innate and adaptive immunity

Abstract

Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vascular macrophage populations in mouse atherosclerotic lesions.
Fig. 2: Adaptive immune cells in atherosclerosis.

Similar content being viewed by others

References

  1. Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Sampson, U. K., Fazio, S. & Linton, M. F. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr. Atheroscler. Rep. 14, 1–10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ridker, P. M. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 37, 1720–1722 (2016).

    Article  PubMed  Google Scholar 

  4. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).

    Article  PubMed  Google Scholar 

  7. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020). This meta-analysis of leukocyte populations in mouse atherosclerotic aortas comprehensively summarizes the transcript profiles and gene signatures of aortic immune cell subsets obtained from nine scRNA-seq studies and two mass cytometry studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 115, 662–667 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Rayner, K. J. Cell death in the vessel wall: the good, the bad, the ugly. Arterioscler. Thromb. Vasc. Biol. 37, e75–e81 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cardoso, L. & Weinbaum, S. Microcalcifications, their genesis, growth, and biomechanical stability in fibrous cap rupture. Adv. Exp. Med. Biol. 1097, 129–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019). This study undertakes an integrated single-cell proteomic and transcriptomic analysis of human atherosclerotic plaques and identifies unique features of plaque T cells and macrophages that are associated with clinical cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Back, M., Yurdagul, A. Jr, Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Spitz, C. et al. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cell. Mol. Life Sci. 73, 901–922 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Tse, K. et al. Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front. Immunol. 4, 493 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Roy, P., Ali, A. J., Kobiyama, K., Ghosheh, Y. & Ley, K. Opportunities for an atherosclerosis vaccine: from mice to humans. Vaccine 38, 4495–4506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Libby, P., Lichtman, A. H. & Hansson, G. K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38, 1092–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, K. W., Ivanov, S. & Williams, J. W. Monocyte recruitment, specification, and function in atherosclerosis. Cells 10, 15 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  23. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007). This study shows that an atherogenic diet induces systemic monocytosis in atherosclerotic mice and it defines the contributions of different chemokine receptors in mediating recruitment of distinct monocyte subsets to atherosclerotic lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Combadiere, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649–1657 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Tabas, I. & Lichtman, A. H. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47, 621–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol. 17, 349–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Marcovecchio, P. M. et al. Scavenger receptor CD36 directs nonclassical monocyte patrolling along the endothelium during early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 37, 2043–2052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quintar, A. et al. Endothelial protective monocyte patrolling in large arteries intensified by Western diet and atherosclerosis. Circ. Res. 120, 1789–1799 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Narasimhan, P. B., Marcovecchio, P., Hamers, A. A. J. & Hedrick, C. C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol. 37, 439–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Hamers, A. A. J. et al. Human monocyte heterogeneity as revealed by high-dimensional mass cytometry. Arterioscler. Thromb. Vasc. Biol. 39, 25–36 (2019). This study uses high-dimensional single-cell mass cytometry to establish the heterogeneity of human blood monocyte subsets, and it functionally characterizes non-classical monocytes expressing the carbohydrate marker 6-sulfo LacNAc, the frequency of which correlates positively with the severity of coronary artery disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012). This study combines lipidomic and transcriptomic analyses to show that macrophage-derived foam cells are associated with suppression, rather than activation, of inflammatory genes and that most of the changes in gene expression and lipid metabolism are triggered by the accumulation of desmosterol, an intermediate in the cholesterol biosynthesis pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koelwyn, G. J., Corr, E. M., Erbay, E. & Moore, K. J. Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19, 526–537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kojima, Y., Weissman, I. L. & Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 135, 476–489 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moore, K. J. et al. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD Series (part 2). J. Am. Coll. Cardiol. 72, 2181–2197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McArdle, S. et al. Migratory and dancing macrophage subsets in atherosclerotic lesions. Circ. Res. 125, 1038–1051 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012). This study defines the role of netrin 1, a neuroimmune guidance factor, in promoting atherosclerotic plaque progression through the retention of macrophages within inflamed blood vessels.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wanschel, A. et al. Neuroimmune guidance cue semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler. Thromb. Vasc. Biol. 33, 886–893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA 103, 3781–3786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feig, J. E. et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123, 989–998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feig, J. E. et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J. Clin. Invest. 120, 4415–4424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Potteaux, S. et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J. Clin. Invest. 121, 2025–2036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, J. D. et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4, e124574 (2019).

    Article  PubMed Central  Google Scholar 

  49. Williams, J. W. et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 21, 1194–1204 (2020). This study characterizes a monocyte-derived arterial resident macrophage population, known as MacAIR, and describes their origins and functions during early and advanced stages of atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016). This study uses multiple fate-mapping approaches to show that tissue-resident macrophages in the arterial adventitia arise from embryonic precursor cells and undergo local proliferation.

    Article  CAS  PubMed  Google Scholar 

  51. Lim, H. Y. et al. Hyaluronan receptor LYVE-1expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Hill, C. A., Fernandez, D. M. & Giannarelli, C. Single cell analyses to understand the immune continuum in atherosclerosis. Atherosclerosis 330, 85–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Zernecke, A. Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler. Thromb. Vasc. Biol. 35, 763–770 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Choi, J. H. et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 35, 819–831 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koltsova, E. K. et al. Dynamic T cell-APC interactions sustain chronic inflammation in. atherosclerosis. J. Clin. Invest. 122, 3114–3126 (2012). This study uses live-cell imaging of explanted mouse atherosclerotic aortas to show antigen-dependent interactions between aortic APCs and CD4+ T cells and that CD4+ T cells from atherosclerotic mice, but not control mice, interact with APCs in the vessel walls of atherosclerotic aorta, suggesting a recall response to an endogenous antigen.

    Article  CAS  PubMed  Google Scholar 

  58. Choi, J. H. et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206, 497–505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haddad, Y. et al. The dendritic cell receptor DNGR-1 promotes the development of atherosclerosis in mice. Circ. Res. 121, 234–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Clement, M. et al. Deletion of IRF8 (interferon regulatory factor 8)-dependent dendritic cells abrogates proatherogenic adaptive immunity. Circ. Res. 122, 813–820 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Subramanian, M., Thorp, E., Hansson, G. K. & Tabas, I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123, 179–188 (2013). This study shows that MYD88-dependent TLR signalling in CD11c+ DCs, which is important for DC maturation, is necessary for the infiltration of both effector T cells and Treg cells in atherosclerotic lesions but largely has an atheroprotective role through the inhibition of inflammatory monocyte recruitment by Treg cells.

    Article  CAS  PubMed  Google Scholar 

  62. Clement, M. et al. Impaired autophagy in CD11b+ dendritic cells expands CD4+ regulatory T cells and limits atherosclerosis in mice. Circ. Res. 125, 1019–1034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Doring, Y. et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125, 1673–1683 (2012).

    Article  PubMed  CAS  Google Scholar 

  64. Sage, A. P. et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. Circulation 130, 1363–1373 (2014). This study identifies that the pro-atherogenic functions of pDCs are mediated by MHC class II-restricted antigen presentation to CD4+ T cells and that this is independent of IFNα production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Daissormont, I. T. et al. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ. Res. 109, 1387–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yun, T. J. et al. Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells. Cell Metab. 23, 852–866 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Butcher, M. J., Wu, C. I., Waseem, T. & Galkina, E. V. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas. Int. Immunol. 28, 255–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Gencer, S., Evans, B. R., van der Vorst, E. P. C., Doring, Y. & Weber, C. Inflammatory chemokines in atherosclerosis. Cells 10, 226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ley, K., Gerdes, N. & Winkels, H. ATVB distinguished scientist award: how costimulatory and coinhibitory pathways shape atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 37, 764–777 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ait-Oufella, H., Taleb, S., Mallat, Z. & Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 969–979 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Maganto-Garcia, E., Tarrio, M. L., Grabie, N., Bu, D. X. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mullick, A. E. et al. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice. J. Lipid Res. 52, 885–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chereshnev, I. et al. Mouse model of heterotopic aortic arch transplantation. J. Surg. Res. 111, 171–176 (2003).

    Article  PubMed  Google Scholar 

  82. Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Engelbertsen, D. et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler. Thromb. Vasc. Biol. 33, 637–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Engelbertsen, D. et al. Induction of T helper 2 responses against human apolipoprotein B100 does not affect atherosclerosis in ApoE−/− mice. Cardiovasc. Res. 103, 304–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Knutsson, A. et al. Associations of interleukin-5 with plaque development and cardiovascular events. JACC Basic Transl. Sci. 4, 891–902 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat. Commun. 8, 15781 (2017). This study uses atherosclerotic mouse models that were deficient in group 2 innate lymphoid cells to prove that IL-5 and IL-13 production by innate lymphoid cells has an atheroprotective role and to highlight the functional overlap between innate lymphoid cells and TH cell subsets in modulating atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, Q. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J. Immunol. 185, 5820–5827 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Nordlohne, J. et al. Aggravated atherosclerosis and vascular inflammation with reduced kidney function depend on interleukin-17 receptor a and are normalized by inhibition of interleukin-17A. JACC Basic Transl. Sci. 3, 54–66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121, 1746–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Danzaki, K. et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 273–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Gistera, A. et al. Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl. Med. 5, 196ra100 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Brauner, S. et al. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc. Res. 114, 158–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Gensous, N. et al. T follicular helper cells in autoimmune disorders. Front. Immunol. 9, 1637 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ryu, H. et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nat. Immunol. 19, 583–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Clement, M. et al. Control of the T follicular helper-germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ. Res. 119, 1190–1203 (2016). This study shows that inflammatory conditions associated with atherosclerosis can trigger the plasticity of Treg cells and result in the formation of IFNγ-expressing T cells with a mixed TH1 cell and Treg cell phenotype, which have impaired ability to suppress effector T cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Ali, A. J., Makings, J. & Ley, K. Regulatory T cell stability and plasticity in atherosclerosis. Cells 9, 2665 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  103. Randolph, G. J., Angeli, V. & Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 1174–1185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marchini, T., Hansen, S. & Wolf, D. ApoB-specific CD4+ T cells in mouse and human atherosclerosis. Cells 10, 446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kimura, T. et al. Regulatory CD4+ T cells recognize MHC-II-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018). This is the first study to detect and characterize APOB-specific autoreactive CD4+ T cells in humans using peptide-specific tetramers and to show the prophylactic potential of human APOB-derived peptide vaccines in mouse models of atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+ T-regulatory cells. Circulation 142, 1279–1293 (2020). This study uses a novel MHC class II tetramer to undertake detailed phenotypic and transcriptomic analyses of APOB-specific mouse CD4+ T cells and establishes the feasibility of using restimulation assays to detect cytokine-expressing, MHC class II-restricted, antigen-specific T cells in human blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zimmer, S., Grebe, A. & Latz, E. Danger signaling in atherosclerosis. Circ. Res. 116, 323–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Ley, K., Pramod, A. B., Croft, M., Ravichandran, K. S. & Ting, J. P. How mouse macrophages sense what is going on. Front. Immunol. 7, 204 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Libby, P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells 10, 951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Miller, Y. I., Choi, S. H., Wiesner, P. & Bae, Y. S. The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br. J. Pharmacol. 167, 990–999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Campbell, L. A. & Rosenfeld, M. E. Infection and atherosclerosis development. Arch. Med. Res. 46, 339–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pothineni, N. V. K. et al. Infections, atherosclerosis, and coronary heart disease. Eur. Heart J. 38, 3195–3201 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Wick, G., Jakic, B., Buszko, M., Wick, M. C. & Grundtman, C. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11, 516–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Kearns, A. C. et al. Caspase-1 activation is related with HIV-associated atherosclerosis in an HIV transgenic mouse model and HIV patient cohort. Arterioscler. Thromb. Vasc. Biol. 39, 1762–1775 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Epstein, S. E., Zhu, J., Najafi, A. H. & Burnett, M. S. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 119, 3133–3141 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 293, 2641–2647 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Tang, W. H. W., Backhed, F., Landmesser, U. & Hazen, S. L. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2089–2105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Piya, M. K., Harte, A. L. & McTernan, P. G. Metabolic endotoxaemia: is it more than just a gut feeling? Curr. Opin. Lipidol. 24, 78–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481 (2015). This study uses ultra-high-pressure liquid chromatography and tandem mass spectrometry to identify choline-consuming, trimethylamine-producing bacterial species in human intestinal isolates and characterizes their relevance in gnotobiotic mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Chen, M. L. et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J. Am. Heart Assoc. 6, e006347 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). This study establishes a mechanistic connection between the dietary component l-carnitine, gut microbial metabolism and TMAO-mediated inhibition of cholesterol reverse transport and increased cardiovascular disease risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, X. S. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 38, 814–824 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Schiattarella, G. G. et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur. Heart J. 38, 2948–2956 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Tang, W. H. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Aldana-Hernandez, P. et al. Dietary choline or trimethylamine N-oxide supplementation does not influence atherosclerosis development in Ldlr−/− and Apoe−/− male mice. J. Nutr. 150, 249–255 (2020).

    Article  PubMed  Google Scholar 

  133. Collins, H. L. et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 244, 29–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Zeisel, S. H. & Warrier, M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu. Rev. Nutr. 37, 157–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Manor, O. et al. A multi-omic association study of trimethylamine N-oxide. Cell Rep. 24, 935–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Kasahara, K. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 3, 1461–1471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fatkhullina, A. R. et al. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49, 943–957.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kurilenko, N., Fatkhullina, A. R., Mazitova, A. & Koltsova, E. K. Act locally, act globally-microbiota, barriers, and cytokines in atherosclerosis. Cells 10, 348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018). This study generates a transgenic mouse model expressing antibodies to oxLDL to evaluate the pro-atherogenic role of oxidized phospholipids in vivo; it proposes antibody-mediated blockade of oxidized phospholipids as a potential therapeutic strategy for atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moore, K. J. & Freeman, M. W. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702–1711 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Menu, P. et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice — brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Weisshaar, S. & Zeitlinger, M. Vaccines targeting PCSK9: a promising alternative to passive immunization with monoclonal antibodies in the management of hyperlipidaemia? Drugs 78, 799–808 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Nettersheim, F. S., De Vore, L. & Winkels, H. Vaccination in atherosclerosis. Cells 9, 2560 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  147. Gistera, A. et al. Vaccination against T-cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. J. Intern. Med. 281, 383–397 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Ait-Oufella, H., Lavillegrand, J. R. & Tedgui, A. Regulatory T cell-enhancing therapies to treat atherosclerosis. Cells 10, 723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mauersberger, C., Schunkert, H. & Sager, H. B. Inflammation-related risk loci in genome-wide association studies of coronary artery disease. Cells 10, 440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cole, J. E. et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114, 1360–1371 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mulligan-Kehoe, M. J. & Simons, M. Vasa vasorum in normal and diseased arteries. Circulation 129, 2557–2566 (2014).

    Article  PubMed  Google Scholar 

  152. Rademakers, T. et al. Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo. Arterioscler. Thromb. Vasc. Biol. 33, 249–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Kocher, O. & Krieger, M. Role of the adaptor protein PDZK1 in controlling the HDL receptor SR-BI. Curr. Opin. Lipidol. 20, 236–241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pal, R. et al. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am. J. Physiol. Heart Circ. Physiol. 311, H1392–H1408 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Yin, W. et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 53, 51–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Barrett-Connor, E. Menopause, atherosclerosis, and coronary artery disease. Curr. Opin. Pharmacol. 13, 186–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maeda, N. et al. Anatomical differences and atherosclerosis in apolipoprotein E-deficient mice with 129/SvEv and C57BL/6 genetic backgrounds. Atherosclerosis 195, 75–82 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Buscher, K. et al. Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nat. Commun. 8, 16041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bennett, B. J. et al. Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet. 11, e1005711 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Mailer, R. K. W., Gistera, A., Polyzos, K. A., Ketelhuth, D. F. J. & Hansson, G. K. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population. Sci. Rep. 7, 15655 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Pollock, A. H. et al. Prolonged intake of dietary lipids alters membrane structure and t cell responses in LDLr−/− mice. J. Immunol. 196, 3993–4002 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Barrington, W. T. & Lusis, A. J. Atherosclerosis: association between the gut microbiome and atherosclerosis. Nat. Rev. Cardiol. 14, 699–700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. He, S. et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature 566, 115–119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bonaccorsi, I. et al. Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Front. Immunol. 10, 1503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Selathurai, A. et al. Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc. Res. 102, 128–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Nour-Eldine, W. et al. Genetic depletion or hyperresponsiveness of natural killer cells do not affect atherosclerosis development. Circ. Res. 122, 47–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Kyaw, T. et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation 127, 1028–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Seijkens, T. T. P. et al. Deficiency of the T cell regulator casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. Eur. Heart J. 40, 372–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Cochain, C. et al. CD8+ T cells regulate monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice. Circ. Res. 117, 244–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Dimayuga, P. C. et al. Identification of apoB-100 peptide-specific CD8+ T cells in atherosclerosis. J. Am. Heart Assoc. 6, e005318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Schafer, S. & Zernecke, A. CD8+ T cells in atherosclerosis. Cells 10, 37 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  173. Getz, G. S. & Reardon, C. A. Natural killer T cells in atherosclerosis. Nat. Rev. Cardiol. 14, 304–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Li, Y. et al. CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ. Res. 116, 245–254 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Vu, D. M. et al. γδT cells are prevalent in the proximal aorta and drive nascent atherosclerotic lesion progression and neutrophilia in hypercholesterolemic mice. PLoS ONE 9, e109416 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Cheng, H. Y., Wu, R. & Hedrick, C. C. Gammadelta (γδ) T lymphocytes do not impact the development of early atherosclerosis. Atherosclerosis 234, 265–269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Poller, W. C., Nahrendorf, M. & Swirski, F. K. Hematopoiesis and cardiovascular disease. Circ. Res. 126, 1061–1085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Seijkens, T. et al. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB J. 28, 2202–2213 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Robbins, C. S. et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation 125, 364–374 (2012). This study shows that monocyte infiltrates in atherosclerotic lesions do not arise exclusively from bone marrow haematopoietic progenitors but also are produced by haematopoiesis at extramedullary sites, particularly the spleen.

    Article  PubMed  Google Scholar 

  182. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nahrendorf, M. & Swirski, F. K. Lifestyle effects on hematopoiesis and atherosclerosis. Circ. Res. 116, 884–894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  189. Ketelhuth, D. F. J. et al. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc. Res. 115, 1385–1392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Perez-Medina, C., Fayad, Z. A. & Mulder, W. J. M. Atherosclerosis immunoimaging by positron emission tomography. Arterioscler. Thromb. Vasc. Biol. 40, 865–873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ouimet, M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 125, 4334–4348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Gerriets, V. A. et al. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Taleb, S. et al. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2691–2698 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016). This study identifies the glycolytic enzyme pyruvate kinase M2 as a crucial molecular link between altered metabolic adaptations and increased inflammation and oxidative stress in monocytes and macrophages from patients with coronary artery disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tomas, L. et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur. Heart J. 39, 2301–2310 (2018). This study conducts targeted metabolic profiling of human carotid plaques and identifies distinct metabolic signatures that distinguish high-risk atherosclerotic plaques from low-risk atherosclerotic plaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018). This study shows that a Western-style diet high in fat and cholesterol triggers NLRP3-dependent inflammasome activation and long-term epigenetic and metabolic reprogramming of myeloid progenitor cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146.e9 (2018). This study identifies mevalonate, a metabolic intermediate in the cholesterol synthesis pathway, as an inducer of trained immunity in human monocytes.

    Article  CAS  PubMed  Google Scholar 

  198. Flores-Gomez, D., Bekkering, S., Netea, M. G. & Riksen, N. P. Trained immunity in atherosclerotic cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 41, 62–69 (2021).

    CAS  PubMed  Google Scholar 

  199. Baardman, J. et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 25, 2044–2052.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Cheng, H. Y. et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J. Clin. Invest. 126, 3236–3246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ketelhuth, D. F. J. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovasc. Res. 115, 1408–1415 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Polyzos, K. A. et al. Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe−/− mice. Cardiovasc. Res. 106, 295–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Cole, J. E. et al. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc. Natl Acad. Sci. USA 112, 13033–13038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Metghalchi, S. et al. Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metab. 22, 460–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Sun, J. et al. Deficiency of antigen-presenting cell invariant chain reduces atherosclerosis in mice. Circulation 122, 808–820 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wigren, M. et al. Lack of ability to present antigens on major histocompatibility complex class II molecules aggravates atherosclerosis in ApoE−/− mice. Circulation 139, 2554–2566 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Bonacina, F. et al. Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat. Commun. 9, 3083 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Peshkova, I. O., Fatkhullina, A. R., Mikulski, Z., Ley, K. & Koltsova, E. K. IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Sci. Rep. 7, 2255 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler. Thromb. Vasc. Biol. 38, e71–e84 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Williams, J. W. et al. B cell-mediated antigen presentation through MHC class II Is dispensable for atherosclerosis progression. Immunohorizons 3, 37–44 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129, 1677–1687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is funded by the US National Institutes of Health (HL136275, HL140976, HL145241, HL146134 and HL148094 to K.L.), a Conrad Prebys Foundation award, a postdoctoral fellowship from the American Heart Association (to M.O.) and the Tullie and Rickey Families SPARK Awards for Innovations in Immunology at La Jolla Institute for Immunology (to P.R. and M.O.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Klaus Ley.

Ethics declarations

Competing interests

K.L. is a co-founder of Atherovax. M.O. and K.L. are named as co-inventors on patents applied for by La Jolla Institute for Immunology relating to cardiovascular diagnostics and therapeutics, and might have the right to receive royalty payments for inventions or discoveries related to cardiovascular diagnostics or therapeutics. P.R. declares no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks K. Moore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Major adverse cardiovascular events

(MACEs). A composite end point frequently used in cardiovascular research that may include clinical complications such as myocardial infarction, stroke, heart failure, need for coronary revascularization, recurrent angina and death from cardiovascular disease.

Low-density lipoprotein

(LDL). A group of apolipoprotein B-containing macromolecular lipid carriers in the blood that transport cholesterol and triglycerides from the liver to other body tissues.

Atherothrombosis

The state of pathological complication when erosion or rupture of atherosclerotic plaques leads to thrombosis or clot formation, resulting in stroke or myocardial infarction.

Atherogenesis

The process of atherosclerotic plaque formation in the intimal layers of the artery, which is mediated by chronic inflammation and lipid deposition in the vessel walls.

Apolipoprotein B

(APOB). The amphipathic protein backbone of most lipid-transport particles in the plasma, including very-low-density lipoprotein, low-density lipoprotein and chylomicrons.

Efferocytosis

The process by which apoptotic cells are engulfed and cleared by phagocytic cells.

Classical monocytes

Ly-6C+ monocytes in mice and the CD14hiCD16 subset in humans. They are CCR2hiCX3CR1low and are important mediators of tissue inflammation.

Non-classical monocytes

Ly-6C monocytes in mice and the CD14lowCD16+ subset in humans. They are CCR2lowCX3CR1hi and patrol the vessel walls to maintain endothelial integrity and homeostasis.

High-density lipoprotein

This is the only group of lipoproteins that do not contain apolipoprotein B. High-density lipoprotein is involved in reverse cholesterol transport, delivering excess cholesterol from tissues to the liver.

Inflammasome

A multiprotein cytosolic complex containing members of the NOD-like receptor (NLR) family (such as NLRP3) that integrates signals from several pattern recognition receptors and results in the maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18.

Trained immunity

The reprogramming of innate immune cells, mostly through epigenetic modifications, that creates a ‘memory’ of the initial insult and generates long-lasting innate immunity to specific triggers.

Very-low-density lipoprotein

The primary transporter of endogenous triglycerides from the liver to other tissues in the body.

Peripherally induced Treg cells

Regulatory T (Treg) cells that arise outside the thymus from conventional T cells that acquire FOXP3 expression in response to various stimuli. Unlike thymus-derived Treg cells, peripherally induced Treg cells do not express neuropilin 1.

Tertiary lymphoid organs

Lymphoid structures that form in peripheral tissues in response to chronic inflammation and that have functional and morphological similarities with secondary lymphoid organs.

Molecular mimicry

The possible cross-reactive activation of autoreactive B cells or T cells that are specific for self-derived epitopes that have sequence similarity or structural homology with pathogen-derived foreign epitopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 22, 251–265 (2022). https://doi.org/10.1038/s41577-021-00584-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00584-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing