Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Breaking tolerance: the autoimmune aspect of atherosclerosis

Abstract

Atherosclerotic cardiovascular disease (ASCVD) is a chronic inflammatory disease of the arterial walls and is characterized by the accumulation of lipoproteins that are insufficiently cleared by phagocytes. Following the initiation of atherosclerosis, the pathological progression is accelerated by engagement of the adaptive immune system. Atherosclerosis triggers the breakdown of tolerance to self-components. This loss of tolerance is reflected in defective expression of immune checkpoint molecules, dysfunctional antigen presentation, and aberrations in T cell populations — most notably in regulatory T (Treg) cells — and in the production of autoantibodies. The breakdown of tolerance to self-proteins that is observed in ASCVD may be linked to the conversion of Treg cells to ‘exTreg’ cells because many Treg cells in ASCVD express T cell receptors that are specific for self-epitopes. Alternatively, or in addition, breakdown of tolerance may trigger the activation of naive T cells, resulting in the clonal expansion of T cell populations with pro-inflammatory and cytotoxic effector phenotypes. In this Perspective, we review the evidence that atherosclerosis is associated with a breakdown of tolerance to self-antigens, discuss possible immunological mechanisms and identify knowledge gaps to map out future research. Rational approaches aimed at re-establishing immune tolerance may become game changers in treating ASCVD and in preventing its downstream sequelae, which include heart attacks and strokes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antigen presentation in atherosclerosis.
Fig. 2: Conversion of regulatory T cells in atherosclerosis.
Fig. 3: Activation and expansion of naive T cells.

Similar content being viewed by others

References

  1. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsao, C. W. et al. Heart Disease and Stroke Statistics — 2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  Google Scholar 

  3. Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention of atherosclerotic cardiovascular disease. N. Engl. J. Med. 381, 1557–1567 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kobiyama, K. & Ley, K. Atherosclerosis. Circ. Res. 123, 1118–1120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Tsimikas, S., Palinski, W. & Witztum, J. L. Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 95–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Tsimikas, S. et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res. 48, 425–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Depuydt, M. A. C. et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat. Cardiovasc. Res. 2, 112–125 (2023).

    Article  Google Scholar 

  13. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Che, J. et al. Serum autoantibodies against human oxidized low-density lipoproteins are inversely associated with severity of coronary stenotic lesions calculated by Gensini score. Cardiol. J. 18, 364–370 (2011).

    PubMed  Google Scholar 

  15. Gruzdeva, O. et al. Multivessel coronary artery disease, free fatty acids, oxidized LDL and its antibody in myocardial infarction. Lipids Health Dis. 13, 111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, Q. et al. Association of anti-oxidized LDL and candidate genes with severity of coronary stenosis in the Women’s Ischemia Syndrome Evaluation study. J. Lipid Res. 52, 801–807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garrido-Sánchez, L., Chinchurreta, P., García-Fuentes, E., Mora, M. & Tinahones, F. J. A higher level of IgM anti-oxidized LDL antibodies is associated with a lower severity of coronary atherosclerosis in patients on statins. Int. J. Cardiol. 145, 263–264 (2010).

    Article  PubMed  Google Scholar 

  18. Soto, Y. et al. Autoantibodies to oxidized low density lipoprotein in relation with coronary artery disease. Hum. Antib. 18, 109–117 (2009).

    Article  CAS  Google Scholar 

  19. van den Berg, V. J. et al. IgM anti-malondialdehyde low density lipoprotein antibody levels indicate coronary heart disease and necrotic core characteristics in the Nordic Diltiazem (NORDIL) study and the Integrated Imaging and Biomarker Study 3 (IBIS-3). EBioMedicine 36, 63–72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+ T-regulatory cells. Circulation 142, 1279–1293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roy, P. et al. Immunodominant MHC-II (major histocompatibility complex II) restricted epitopes in human apolipoprotein B. Circ. Res. 131, 258–276 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wick, G., Knoflach, M. & Xu, Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu. Rev. Immunol. 22, 361–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Saigusa, R. et al. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat. Cardiovasc. Res. 1, 462–475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Koltsova, E. K. et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J. Clin. Invest. 122, 3114–3126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martel, C. et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest. 123, 1571–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iqneibi, S. et al. Single cell transcriptomics reveals recent CD8T cell receptor signaling in patients with coronary artery disease. Front. Immunol. 14, 1239148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freuchet, A. et al. Identification of human exTreg cells as CD16+CD56+ cytotoxic CD4+ T cells. Nat. Immunol. 24, 1748–1761 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, J. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ali, A. J., Makings, J. & Ley, K. Regulatory T cell stability and plasticity in atherosclerosis. Cells 9, 2665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Theofilopoulos, A. N., Kono, D. H. & Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 18, 716–724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duarte, J. H., Zelenay, S., Bergman, M.-L., Martins, A. C. & Demengeot, J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39, 948–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bovenschen, H. J. et al. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol. 131, 1853–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barbi, J., Pardoll, D. & Pan, F. Treg functional stability and its responsiveness to the microenvironment. Immunol. Rev. 259, 115–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, J. & Zhou, X. Regulatory T cells turn pathogenic. Cell Mol. Immunol. 12, 525–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laurence, A. et al. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity 37, 209–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Edsfeldt, A. & Nilsson, J. Understanding autoimmunity in atherosclerosis paves the way for novel therapies. Nat. Cardiovasc. Res. 2, 227–229 (2023).

    Article  Google Scholar 

  52. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chowdhury, R. R. et al. Human coronary plaque T cells are clonal and cross-react to virus and self. Circ. Res. 130, 1510–1530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Galkina, E. et al. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-γ production, and macrophage accumulation in the aortic wall. Circulation 116, 1801–1811 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Combadière, C. et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107, 1009–1016 (2003).

    Article  PubMed  Google Scholar 

  57. Munn, D. H., Sharma, M. D. & Johnson, T. S. Treg destabilization and reprogramming: implications for cancer immunotherapy. Cancer Res. 78, 5191–5199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol. 22, 251–265 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Overacre-Delgoffe, A. E. et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cole, J. E. et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114, 1360–1371 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baratin, M. et al. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42, 627–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Roy, P., Ali, A. J., Kobiyama, K., Ghosheh, Y. & Ley, K. Opportunities for an atherosclerosis vaccine: from mice to humans. Vaccine 38, 4495–4506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ley, K. The second touch hypothesis: T cell activation, homing and polarization. F1000Research 3, 37 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xing, Y. & Hogquist, K. A. T-cell tolerance: central and peripheral. Cold Spring Harb. Perspect. Biol. 4, a006957 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bluestone, J. A. Mechanisms of tolerance. Immunol. Rev. 241, 5–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Wirnsberger, G., Hinterberger, M. & Klein, L. Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol. Cell Biol. 89, 45–53 (2011).

    Article  PubMed  Google Scholar 

  70. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42, 929–941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Legoux, F. P. et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43, 896–908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tai, X. et al. How autoreactive thymocytes differentiate into regulatory versus effector CD4+ T cells after avoiding clonal deletion. Nat. Immunol. 24, 637–651 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Owen, D. L. et al. Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 20, 195–205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shevach, E. M. & Thornton, A. M. tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259, 88–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Metzger, T. C. & Anderson, M. S. Control of central and peripheral tolerance by Aire. Immunol. Rev. 241, 89–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cebula, A. et al. Dormant pathogenic CD4+ T cells are prevalent in the peripheral repertoire of healthy mice. Nat. Commun. 10, 4882 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parish, I. A. & Heath, W. R. Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol. Cell Biol. 86, 146–152 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Zheng, Y., Zha, Y. & Gajewski, T. F. Molecular regulation of T-cell anergy. EMBO Rep. 9, 50–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nurieva, R. I., Liu, X. & Dong, C. Molecular mechanisms of T-cell tolerance. Immunol. Rev. 241, 133–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shevach, E. M. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Kurts, C. et al. CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl Acad. Sci. USA 96, 12703–12707 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lang, K. S. et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 11, 138–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Ramanathan, S. et al. Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. J. Immunol. 186, 5131–5141 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Millar, D. G. et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9, 1469–1476 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Oelert, T. et al. Irradiation and IL-15 promote loss of CD8 T-cell tolerance in response to lymphopenia. Blood 115, 2196–2202 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Bour-Jordan, H. et al. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol. Rev. 241, 180–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. He, X. & Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30, 660–669 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Francisco, L. M., Sage, P. T. & Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Poels, K. et al. Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease: an emerging clinical problem. J. Immunother. Cancer 9, e002916 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Georgiev, P., Charbonnier, L.-M. & Chatila, T. A. Regulatory T cells: the many faces of Foxp3. J. Clin. Immunol. 39, 623–640 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benoist, C. & Mathis, D. Treg cells, life history, and diversity. Cold Spring Harb. Perspect. Biol. 4, a007021 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Walker, L. S. K. CD4+ CD25+ Treg: divide and rule? Immunology 111, 129–137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, J. et al. Identification of the E3 deubiquitinase ubiquitin-specific peptidase 21 (USP21) as a positive regulator of the transcription factor GATA3. J. Biol. Chem. 288, 9373–9382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Y. et al. USP21 prevents the generation of T-helper-1-like Treg cells. Nat. Commun. 7, 13559 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Delacher, M. et al. Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nat. Commun. 10, 1621 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  113. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saxena, V., Lakhan, R., Iyyathurai, J. & Bromberg, J. S. Mechanisms of exTreg induction. Eur. J. Immunol. 51, 1956–1967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shi, H. & Chi, H. Metabolic control of Treg cell stability, plasticity, and tissue-specific heterogeneity. Front. Immunol. 10, 2716 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Nakatsukasa, H. et al. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression. Int. Immunol. 31, 335–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Yue, X., Lio, C.-W. J., Samaniego-Castruita, D., Li, X. & Rao, A. Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nat. Commun. 10, 2011 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  119. DuPage, M. et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gabryšová, L. et al. Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur. J. Immunol. 41, 1242–1248 (2011).

    Article  PubMed  Google Scholar 

  122. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Hua, J. et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci. Rep. 8, 7059 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  125. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sharma, M. D. et al. An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity 38, 998–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Guo, J. et al. Constitutive activation of MEK1 promotes Treg cell instability in vivo. J. Biol. Chem. 289, 35139–35148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Kitz, A. et al. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease. EMBO Rep. 17, 1169–1183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Charbonnier, L.-M., Wang, S., Georgiev, P., Sefik, E. & Chatila, T. A. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat. Immunol. 16, 1162–1173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Feldhoff, L. M. et al. IL-1β induced HIF-1α inhibits the differentiation of human FOXP3+ T cells. Sci. Rep. 7, 465 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  135. Chen, L., Wu, J., Pier, E., Zhao, Y. & Shen, Z. mTORC2-PKBα/Akt1 serine 473 phosphorylation axis is essential for regulation of FOXP3 stability by chemokine CCL3 in psoriasis. J. Invest. Dermatol. 133, 418–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Lu, L. et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Natl Acad. Sci. USA 111, E3432–E3440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baban, B. et al. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J. Immunol. 183, 2475–2483 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Sharma, M. D. et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113, 6102–6111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sharma, M. D. et al. Reprogrammed Foxp3+ regulatory T cells provide essential help to support cross-presentation and CD8+ T cell priming in naive mice. Immunity 33, 942–954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.K. and P.R. researched data for the article. All authors contributed substantially to discussion of the content. K.L. and A.K. wrote most of the article and P.R. wrote much of the box text. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Klaus Ley.

Ethics declarations

Competing interests

K.L. is a co-founder of Atherovax, a biotech company developing a tolerogenic vaccine for atherosclerosis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks C. Weber, J. Nilsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Roy, P. & Ley, K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01010-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01010-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing