Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental origins shape the paediatric cancer genome

Abstract

In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spectrum and drivers of paediatric cancers.
Fig. 2: Chromatin modifiers disrupted in paediatric cancer.
Fig. 3: Mechanisms of cis-activation of proto-oncogene in paediatric cancers.
Fig. 4: A new hypothesis for the acquisition of cancer hallmarks in paediatric cancer.

Similar content being viewed by others

References

  1. Downing, J. R. et al. The Pediatric Cancer Genome Project. Nat. Genet. 44, 619–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ehrhardt, M. J. et al. Improving quality and quantity of life for childhood cancer survivors globally in the twenty-first century. Nat. Rev. Clin. Oncol. 20, 678–696 (2023).

    Article  PubMed  Google Scholar 

  3. Behjati, S., Gilbertson, R. J. & Pfister, S. M. Maturation block in childhood cancer. Cancer Discov. 11, 542–544 (2021).

    Article  PubMed  Google Scholar 

  4. Vineis, P. & Wild, C. P. Global cancer patterns: causes and prevention. Lancet 383, 549–557 (2014).

    Article  PubMed  Google Scholar 

  5. Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 18, 471–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mackay, A. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32, 520–537.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bolouri, H. et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24, 103–112 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Umeda, M. et al. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat. Genet. 56, 281–293 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018). Together with Ma et al. (Nature, 2018), this large-scale pan-cancer study provides a rationale for paediatric cancer-focused translational research by demonstrating that biological processes affected by genetic alterations in paediatric cancer are distinct from those in adult cancer and that low mutation burden accompanied by a unique driver gene portfolio defines the distinct landscape of paediatric cancer genomes.

    Article  PubMed  Google Scholar 

  13. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, G. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46, 444–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35, 505–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Linhart, K., Bartsch, H. & Seitz, H. K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol. 3, 56–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McLeod, C. et al. St. Jude Cloud: a pediatric cancer genomic data-sharing ecosystem. Cancer Discov. 11, 1082–1099 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brady, S. W. et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat. Commun. 11, 5183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 54, 1376–1389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 724–732 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thatikonda, V. et al. Comprehensive analysis of mutational signatures reveals distinct patterns and molecular processes across 27 pediatric cancers. Nat. Cancer 4, 276–289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, J., Setton, J., Lee, N. Y., Riaz, N. & Powell, S. N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9, 3292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li, B. et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 135, 41–55 (2020). This study shows for the first time that resistance mutations can be acquired through mutational processes associated with thiopurine treatment in paediatric ALL, forming a new molecular basis for ALL relapse.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang, F. et al. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. Nat. Cancer 2, 819–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Hagiwara, K. et al. Dynamics of age- versus therapy-related clonal hematopoiesis in long-term survivors of pediatric cancer. Cancer Discov. 13, 844–857 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mauz-Korholz, C. et al. Pediatric Hodgkin lymphoma. J. Clin. Oncol. 33, 2975–2985 (2015).

    Article  PubMed  Google Scholar 

  31. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  32. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hunger, S. P. & Mullighan, C. G. Acute lymphoblastic leukemia in children. N. Engl. J. Med. 373, 1541–1552 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Nikbakht, H. et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat. Commun. 7, 11185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eleveld, T. F. et al. Relapsed neuroblastomas show frequent RAS–MAPK pathway mutations. Nat. Genet. 47, 864–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 45, 602–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015). This seminal study on germline mutation prevalence and family history in 1,120 paediatric cancer patients lays the foundation for genome-scale pathogenicity classification of germline mutations in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, C. et al. The genomic landscape of childhood and adolescent melanoma. J. Invest. Dermatol. 135, 816–823 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Funakoshi, Y., Sugihara, Y., Uneda, A., Nakashima, T. & Suzuki, H. Recent advances in the molecular understanding of medulloblastoma. Cancer Sci. 114, 741–749 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Yasuda, T. et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat. Genet. 48, 569–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Kawamura-Saito, M. et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum. Mol. Genet. 15, 2125–2137 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sturm, D. et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164, 1060–1072 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsai, J. W. et al. FOXR2 is an epigenetically regulated pan-cancer oncogene that activates ETS transcriptional circuits. Cancer Res. 82, 2980–3001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmitt-Hoffner, F. et al. FOXR2 stabilizes MYCN protein and identifies non-MYCN-amplified neuroblastoma patients with unfavorable outcome. J. Clin. Oncol. 39, 3217–3228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flasch, D. A. et al. Somatic LINE-1 promoter acquisition drives oncogenic FOXR2 activation in pediatric brain tumor. Acta Neuropathol. 143, 605–607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Belver, L. & Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014).

    Article  PubMed  Google Scholar 

  53. Piunti, A. & Shilatifard, A. Epigenetic balance of gene expression by polycomb and COMPASS families. Science 352, aad9780 (2016).

    Article  PubMed  Google Scholar 

  54. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171, 34–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathur, R. et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, Z. et al. Mitotic bookmarking by SWI/SNF subunits. Nature 618, 180–187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hasselblatt, M. et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 128, 453–456 (2014).

    Article  PubMed  Google Scholar 

  60. Newman, S. et al. Genomes for kids: the scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov. 11, 3008–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parsons, D. W. et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2, 616–624 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang, Z. et al. Genetic risk for subsequent neoplasms among long-term survivors of childhood cancer. J. Clin. Oncol. 36, 2078–2087 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sausen, M. et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat. Genet. 45, 12–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benabdallah, N. S. et al. Aberrant gene activation in synovial sarcoma relies on SSX specificity and increased PRC1.1 stability. Nat. Struct. Mol. Biol. 30, 1640–1652 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McBride, M. J. et al. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. Nat. Struct. Mol. Biol. 27, 836–845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Crompton, B. D. et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 4, 1326–1341 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Tirode, F. et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4, 1342–1353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pajtler, K. W. et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 136, 211–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jain, S. U. et al. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat. Commun. 10, 2146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Winters, A. C. & Bernt, K. M. MLL-rearranged leukemias—an update on science and clinical approaches. Front. Pediatr. 5, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat. Rev. Genet. 22, 38–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Piunti, A. & Shilatifard, A. The roles of polycomb repressive complexes in mammalian development and cancer. Nat. Rev. Mol. Cell Biol. 22, 326–345 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Parisian, A. D. et al. SMARCB1 loss interacts with neuronal differentiation state to block maturation and impact cell stability. Genes. Dev. 34, 1316–1329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Erikson, J. et al. Deregulation of c-myc by translocation of the α-locus of the T-cell receptor in T-cell leukemias. Science 232, 884–886 (1986).

    Article  CAS  PubMed  Google Scholar 

  82. Sanda, T. & Leong, W. Z. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp. Hematol. 53, 7–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014). This study reveals an oncogenic process involving relocation of an active enhancer by DNA structural variations, inspiring subsequent investigation into these enhancer hijacking events, leading to discovery of new cancer drivers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Van Vlierberghe, P. & Ferrando, A. The molecular basis of T cell acute lymphoblastic leukemia. J. Clin. Invest. 122, 3398–3406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Russell, L. J. et al. IGH@ translocations are prevalent in teenagers and young adults with acute lymphoblastic leukemia and are associated with a poor outcome. J. Clin. Oncol. 32, 1453–1462 (2014).

    Article  PubMed  Google Scholar 

  86. Bernard, O. A. et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15, 1495–1504 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Haferlach, C. et al. Three novel cytogenetically cryptic EVI1 rearrangements associated with increased EVI1 expression and poor prognosis identified in 27 acute myeloid leukemia cases. Genes. Chromosomes Cancer 51, 1079–1085 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Montefiori, L. E. et al. Enhancer hijacking drives oncogenic BCL11B expression in lineage-ambiguous stem cell leukemia. Cancer Discov. 11, 2846–2867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zimmerman, M. W. et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 8, 320–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Jansky, S. et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat. Genet. 53, 683–693 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, M. et al. 13q12.2 deletions in acute lymphoblastic leukemia lead to upregulation of FLT3 through enhancer hijacking. Blood 136, 946–956 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu, Y. et al. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat. Genet. 52, 811–818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130–1137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bahr, C. et al. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 553, 515–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koelsche, C. et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 126, 907–915 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Li, Z. et al. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 31, 2057–2064 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Abraham, B. J. et al. Small genomic insertions form enhancers that misregulate oncogenes. Nat. Commun. 8, 14385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu, S. et al. Whole-genome noncoding sequence analysis in T-cell acute lymphoblastic leukemia identifies oncogene enhancer mutations. Blood 129, 3264–3268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014). This ground-breaking study on oncogenic activation in T-ALL caused by a de novo enhancer formed through somatic mutation demonstrates the critical role of non-coding variants in disrupting transcription cis-regulation and reshaping the epigenetic landscape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rahman, S. et al. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia. Blood 129, 3221–3226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335 (2018). By mapping the cellular architecture of H3 K27M gliomas using scRNA-seq, this study tracks the tumour cell lineage to oligodendrocyte precursor cells, identifying PDGFRA and oligodendrocyte precursor cell markers as potential therapeutic targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hovestadt, V. et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 572, 74–79 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hendrikse, L. D. et al. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature 609, 1021–1028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith, K. S. et al. Unified rhombic lip origins of group 3 and group 4 medulloblastoma. Nature 609, 1012–1020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ocasio, J. K. et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat. Commun. 10, 5829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gojo, J. et al. Single-cell RNA-seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma. Cancer Cell 38, 44–59.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dong, R. et al. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell 38, 716–733.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Kildisiute, G., Young, M. D. & Behjati, S. Pitfalls of applying mouse markers to human adrenal medullary cells. Cancer Cell 39, 132–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Bedoya-Reina, O. C. & Schlisio, S. Chromaffin cells with sympathoblast signature: too similar to keep apart? Cancer Cell 39, 134–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, R. et al. Response to Kildsiute et al. and Bedoya-Reina and Schlisio. Cancer Cell 39, 136–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Kildisiute, G. et al. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci. Adv. 7, eabd3311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van Groningen, T. et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat. Genet. 49, 1261–1266 (2017). This study reveals that undifferentiated mesenchymal and committed adrenergic cells are the two major cell types in neuroblastoma, and that chemoresistance of mesenchymal cells may account for their enrichment in relapsed tumours.

    Article  PubMed  Google Scholar 

  119. Zimmerman, M. W. et al. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci. Adv. 7, eabe0834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patel, A. G. et al. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Dev. Cell 57, 1226–1240.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Casanova, M. et al. Regorafenib plus vincristine and irinotecan in pediatric patients with recurrent/refractory solid tumors: an innovative therapy for children with cancer study. Clin. Cancer Res. 29, 4341–4351 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Khabirova, E. et al. Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nat. Med. 28, 743–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021). This first genome-scale genetic screen of paediatric cancer cell lines reveals vulnerabilities distinct from those of adult cancer, highlighting the need and potential for therapeutic development focusing on paediatric cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stewart, E. et al. Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 9, 829–841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Federico, S. M. et al. A phase I trial of talazoparib and irinotecan with and without temozolomide in children and young adults with recurrent or refractory solid malignancies. Eur. J. Cancer 137, 204–213 (2020). This study reports a phase I clinical trial that shows efficacy of using talazoparib and irinotecan to treat Ewing sarcoma and synovial sarcoma, demonstrating the potential for using PARP inhibitors in treating recurrent and refractory paediatric solid tumours.

    Article  CAS  PubMed  Google Scholar 

  128. Xu, Y. & Villalona-Calero, M. A. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol. 13, 1841–1851 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Yap, T. A., Sandhu, S. K., Carden, C. P. & de Bono, J. S. Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J. Clin. 61, 31–49 (2011).

    Article  PubMed  Google Scholar 

  130. Gocho, Y. et al. Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nat. Cancer 2, 284–299 (2021). This study identifies LCK as the target of dasatinib sensitivity in T-ALL by integrating pharmacotyping, network analysis and dependency screening, demonstrating the high translational impact of such an approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT05268003 (2024).

  132. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/study/NCT05751044 (2023).

  133. Chinese Clinical Trial Registry. ChiCTR.org.cn, https://www.chictr.org.cn/showproj.html?proj=57512 (2023).

  134. Hu, J. et al. Preclinical evaluation of proteolytic targeting of LCK as a therapeutic approach in T cell acute lymphoblastic leukemia. Sci. Transl. Med. 14, eabo5228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug. Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell Biol. 34, 1136–1144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, X. et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1881 (2019). This study shows selective dependency on BRD9 in rhabdoid tumour driven by a BRD9-containing SWI/SNF subcomplex that lacks SMARCB1, revealing the unique therapeutic potential afforded by exploiting the dysfunctional SWI/SNF complex.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yarmarkovich, M. et al. Targeting of intracellular oncoproteins with peptide-centric CARs. Nature 623, 820–827 (2023). This study presents the effectiveness of peptide-centric CARs in targeting intracellular oncoproteins such as PHOX2B in neuroblastoma, showcasing the potential of PC-CAR in expanding the pool of immunotherapeutic targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oberlick, E. M. et al. Small-molecule and CRISPR screening converge to reveal receptor tyrosine kinase dependencies in pediatric rhabdoid tumors. Cell Rep. 28, 2331–2344.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Howard, T. P. et al. MDM2 and MDM4 are therapeutic vulnerabilities in malignant rhabdoid tumors. Cancer Res. 79, 2404–2414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Howard, T. P. et al. Rhabdoid tumors are sensitive to the protein-translation inhibitor homoharringtonine. Clin. Cancer Res. 26, 4995–5006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sun, C. X. et al. Generation and multi-dimensional profiling of a childhood cancer cell line atlas defines new therapeutic opportunities. Cancer Cell 41, 660–677.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Robison, L. L. & Hudson, M. M. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat. Rev. Cancer 14, 61–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Hutzen, B. et al. Immunotherapeutic challenges for pediatric cancers. Mol. Ther. Oncolytics 15, 38–48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Das, A. et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat. Med. 28, 125–135 (2022). This study presents a high response rate to immune checkpoint inhibitors in children with constitutional mismatch repair syndrome, with hypermutated tumour genomes providing a new perspective on the relevance of such therapy to paediatric cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Patterson, J. D., Henson, J. C., Breese, R. O., Bielamowicz, K. J. & Rodriguez, A. CAR T cell therapy for pediatric brain tumors. Front. Oncol. 10, 1582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023). This groundbreaking study reports the high response rate in relapsed or refractory neuroblastoma achieved in the phase I–II clinical trial of GD2-CART01, showing the promise of immunotherapy in treating high-risk paediatric cancers.

    Article  PubMed  Google Scholar 

  152. Bosse, K. R. et al. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell 32, 295–309.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Durbin, A. D. et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat. Genet. 50, 1240–1246 (2018). This study establishes the connection between genetic dependency and core regulatory circuitry critical in driving a transcription programme for maintaining cell state and survival, unlocking a therapeutic opportunity for using a combination of BRD4 and CDK7 inhibitors to disrupt this core regulatory circuitry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Schwartzman, O. & Tanay, A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16, 716–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/study/NCT04965753 (2023).

  162. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/study/NCT05355753 (2024).

  163. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Guenther, L. M. et al. A combination CDK4/6 and IGF1R inhibitor strategy for Ewing sarcoma. Clin. Cancer Res. 25, 1343–1357 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Shulman, D. S. et al. Phase 2 trial of palbociclib and ganitumab in patients with relapsed Ewing sarcoma. Cancer Med. 12, 15207–15216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/study/NCT04129151 (2023).

  168. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/study/NCT05952687 (2024).

  169. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/study/NCT02114229 (2024).

  170. Durbin, A. D. et al. EP300 selectively controls the enhancer landscape of MYCN-amplified neuroblastoma. Cancer Discov. 12, 730–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Seong, B. K. A. et al. TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell 39, 1262–1278.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lu, D. Y. et al. The ETS transcription factor ETV6 constrains the transcriptional activity of EWS-FLI to promote Ewing sarcoma. Nat. Cell Biol. 25, 285–297 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gao, Y. et al. ETV6 dependency in Ewing sarcoma by antagonism of EWS-FLI1-mediated enhancer activation. Nat. Cell Biol. 25, 298–308 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, Y. et al. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat. Struct. Mol. Biol. 30, 1160–1171 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Malone, C. F. et al. Selective modulation of a pan-essential protein as a therapeutic strategy in cancer. Cancer Discov. 11, 2282–2299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hsu, J. Y. et al. SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Rep. 38, 110323 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Panditharatna, E. et al. BAF complex maintains glioma stem cells in pediatric H3K27M glioma. Cancer Discov. 12, 2880–2905 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mo, Y. et al. Epigenome programming by H3.3K27M mutation creates a dependence of pediatric glioma on SMARCA4. Cancer Discov. 12, 2906–2929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mota, M. et al. Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine gliomas. Proc. Natl Acad. Sci. USA 120, e2221175120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Neggers, J. E. et al. Synthetic lethal interaction between the ESCRT paralog enzymes VPS4A and VPS4B in cancers harboring loss of chromosome 18q or 16q. Cell Rep. 33, 108493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. So, J. et al. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight 7, e158755 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. The National Academies of Sciences, Engineering, and Medicine. Childhood Cancer and Functional Impacts Across the Care Continuum (National Academies Press, 2021).

  183. Guerreiro Stucklin, A. S. et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 10, 4343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Erker, C. et al. Characteristics of patients ≥10 years of age with diffuse intrinsic pontine glioma: a report from the International DIPG/DMG Registry. Neuro Oncol. 24, 141–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Fiala, E. M. et al. Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors. Nat. Cancer 2, 357–365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. van Tilburg, C. M. et al. The pediatric precision oncology INFORM registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 11, 2764–2779 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Waszak, S. M. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Waszak, S. M. et al. Germline elongator mutations in sonic hedgehog medulloblastoma. Nature 580, 396–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kim, J. et al. Germline pathogenic variants in neuroblastoma patients are enriched in BARD1 and predict worse survival. J. Natl Cancer Inst. 116, 149–159 (2024).

    Article  PubMed  Google Scholar 

  191. Witkowski, L. et al. Germline pathogenic SMARCA4 variants in neuroblastoma. J. Med. Genet. 60, 987–992 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, Z. et al. Association of germline BRCA2 mutations with the risk of pediatric or adolescent non-Hodgkin lymphoma. JAMA Oncol. 5, 1362–1364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Klco, J. M. & Mullighan, C. G. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat. Rev. Cancer 21, 122–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Randall, M. P. et al. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. J. Natl Cancer Inst. 116, 138–148 (2024).

    Article  PubMed  Google Scholar 

  195. Cupit-Link, M., Hagiwara, K., Zhang, J. & Federico, S. M. Clinical response to a PARP inhibitor and chemotherapy in a child with BARD1-mutated refractory neuroblastoma: a case report. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3250117/v1 (2023).

  196. Qin, N. et al. Pathogenic germline mutations in DNA repair genes in combination with cancer treatment exposures and risk of subsequent neoplasms among long-term survivors of childhood cancer. J. Clin. Oncol. 38, 2728–2740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Stegmaier, A. Durban, J. J. Yang and Z. Rankovic for help in reviewing the content of Table 1. They thank P. Geeleher, A. Durban, L. Helman, S. J. Baker, D. A. Wheeler, J. Yu, X. Chen, T. Look, J. Maris, M. Dyer, S. Brady and V. Pastor Loyola for critical feedback on the manuscript. L. Robison provided the Surveillance, Epidemiology, and End Results Program (SEER Program) data for calculating the distribution of cancer types. An early discussion with R. Weinberg  and X. Ma inspired our interest in comparing the differences between paediatric and adult cancers. M. Edmonson helped proofread the manuscript. This study was supported, in part, by National Cancer Institute (NCI) grants R01CA216391 to J.Z. and R01CA113794, R01CA172152 and R01CA273455 to C.W.M.R., and by a Cancer Center Support Grant (P30 CA21765) to C.W.M.R. The study is also supported by American Lebanese Syrian Associated Charities (ALSAC), the St. Jude Research Collaborative Consortium of the 3D Genome and the Chromatin Collaborative.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. conceived the manuscript. J.Z., X.C. and C.W.M.R. wrote the manuscript. X.C. and W.Y. summarized the data and generated the figures.

Corresponding author

Correspondence to Jinghui Zhang.

Ethics declarations

Competing interests

C.W.M.R. is a scientific advisory board member of Exo Therapeutics, unrelated to this manuscript. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Janet Shipley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Childhood Cancer Organization: https://www.acco.org/us-childhood-cancer-statistics/

Catalogue Of Somatic Mutations In Cancer (COSMIC): https://cancer.sanger.ac.uk/cosmic

DepMap Portal: https://depmap.org/portal

SEER Program: https://seer.cancer.gov

St. Jude Cloud Paediatric Cancer Knowledge (PeCan): https://pecan.stjude.org/

The Paediatric Cancer Dependencies Accelerator: https://peddep.org

Supplementary information

Glossary

Adrenergic state

The adrenergic state in neuroblastoma refers to a differentiated cell identity similar to sympathetic neurons, characterized by the expression of genes for adrenaline production.

Aflatoxin

A member of a family of toxins produced by certain fungi that are found on agricultural crops such as maize (corn), peanuts, cottonseed and tree nuts. Exposure to aflatoxin is associated with increased risk of hepatocellular carcinomas.

Chromaffin cells

Cells found in the adrenal medulla that release adrenaline and noradrenaline can be involved in the development of neuroblastoma, contributing to its characteristic symptoms and biological behaviour.

Chromatin modifiers

Enzymes or proteins that add or remove post-translational modification to or from DNA and histones, affecting chromatin structure and gene expression.

Chromatin remodellers

Complexes that reposition, slide, evict or alter the structure of nucleosomes/histone/histone variants, thereby changing the accessibility of chromatin to regulate gene expression.

Clonal haematopoiesis

A condition where blood cells originating from a single haematopoietic stem cell with a specific genetic mutation proliferate more than other cells, creating a population of blood cells with a distinct genetic pattern.

Core regulatory circuitry

A network of transcription factors that regulate the key genes defining cell identity and function.

Ectodermal lineage

Cells that derive from the ectoderm, the outermost germ layer of the embryo, developing into structures such as skin and nervous tissue.

Ependymoma

A rare tumour originating from ependymal cells lining the ventricles and passageways of the brain and spinal cord, characterized by the uncontrolled growth of these cells that produce cerebrospinal fluid.

Epipodophyllotoxins

A class of chemotherapeutic agents derived from the podophyllotoxin that inhibit DNA topoisomerase II, leading to DNA damage and cell death.

Genetic dependency screening

Loss-of-function screening using RNA interference or CRISPR approaches to identify genes that specific cancer cell lines depend upon for survival.

GGAA repeat microsatellites

In Ewing sarcoma, GGAA repeat microsatellites serve as binding sites for the Ewing sarcoma breakpoint region 1 (EWSR1)–friend leukaemia virus integration 1 (FLI1) fusion protein (EWS-FLI), a consequence of chromosomal translocation, enabling the aberrant regulation of gene expression critical to tumour development.

Group 3 medulloblastoma

This highly aggressive and metastatic subtype is known for MYC amplification and a poor prognosis, particularly affecting young children, and is characterized by various genetic alterations.

Group 4 medulloblastoma

The most common subtype, exhibiting a wide range of genetic alterations including isochromosome 17q and showing variable prognosis, with certain chromosomal gains and losses indicating a more favourable outcome.

Hot L1 element

A particularly active LINE-1 (L1) element that is capable of frequent transposition and often contributes to genetic diversity and diseases.

Hyperdiploidy

A major subtype of paediatric B-lineage acute lymphoid leukaemia (B-ALL) that is traditionally diagnosed with chromosome copy number abnormalities with chromosome counts between 52 and 67 in different studies.

Hypermutator phenotype

A cellular state characterized by an abnormally high mutation rate, with the tumour mutational burden exceeding ten mutations per megabase, often due to defects in DNA mismatch repair (MMR).

Immune checkpoint inhibitors

Drugs that block certain proteins which regulate immune responses, thereby enhancing the ability of T cells to attack cancer cells, commonly targeting checkpoint proteins such as PD-1 or PD-L1.

Insulated neighbourhoods

Chromosomal loop structures formed by the interaction of two DNA sites bound by the CCCTC binding factor (CTCF) protein and occupied by the cohesin complex.

LINE-1 (L1) element

A family of related class I transposable elements classified with the long interspersed elements (LINEs) that comprise 17% of human DNA; active retrotransposons can alter gene function and influence genome stability, thereby contributing to cancer.

Medulloblastoma

A tumour that arises in the cerebellum, part of the brain located at the base of the skull. Medulloblastoma is the most common cancerous brain tumour in children and is subdivided into four main subgroups (WNT, SHH, group 3 and group 4) based on their distinct demographic, transcriptional, genetic and clinical features.

Mesodermal lineage

Cells that originate from the mesoderm, one of the three primary germ layers in early embryonic development, which give rise to tissues such as muscle, bone and blood.

Molecular glues

Small molecules that facilitate the interaction between two protein surfaces, enhancing their affinity for each other and often inducing novel protein–protein associations, potentially altering protein function for therapeutic purposes.

Multimodal single-cell assays

Assays that integrate multiple types of single-cell data (for example, transcriptomic, epigenomic, proteomic) from the same cell, providing a holistic view of cellular function.

Neuroblast

The large cell in the early embryo, from which the nervous system develops.

Neuroblastoma

A paediatric cancer originating from immature nerve tissue, predominantly in the adrenal glands atop the kidneys.

Neuronal-like populations

Cells or groups of cells that exhibit characteristics similar to neurons.

Perturb-seq

A technique combining CRISPR-based perturbations with single-cell RNA sequencing to study gene function.

Pharmacotyping

A comprehensive analysis of drug sensitivity across molecularly defined cancer subtypes to understand and predict treatment responses, thereby guiding precision medicine tailored to individual patient profiles.

Posterior fossa group A

Ependymomas that primarily occur in infants and young children, which arise from the lateral recess of the fourth ventricle and exhibit few mutations and distinct chromosomal changes such as gain of chromosome 1q and loss of 6q, marked by the loss of trimethylated histone H3 K27, often due to EZH inhibitory protein (EZHIP) mutations or overexpression and, sometimes, K27M mutations in H3.

Primitive vesicle cells

As forerunners in kidney organogenesis, primitive vesicle cells can, through oncogenic mutations, lead to kidney tumours by disrupting the normal development of nephrons, the kidney’s filtration units.

Proteolysis targeting chimera

(PROTAC). A chemical strategy in which a small molecule that binds to a protein of interest is joined by a linker, bridged to an immunomodulatory drug that interacts with an E3 ubiquitin ligase receptor (for example, von Hippel–Lindau (VHL) or cereblon), so that the protein of interest is juxtaposed to the E3 ligase resulting in its polyubiquitination followed by proteasomal degradation.

Rhabdomyosarcoma

A malignant soft tissue tumour made up of cells that normally develop into skeletal muscles. Rhabdomyosarcoma is characterized by four histological subtypes, including embryonal, alveolar, spindle cell/sclerosing and pleomorphic, with distinct genomic profiles — embryonal types often showing loss of heterozygosity at 11p15 and RAS pathway mutations, and alveolar types characterized by FOXO1 fusions with paired box 3 (PAX3) or PAX7.

Rhombic lip

An embryonic structure in the hindbrain that acts as a source of neuronal precursors, implicated in the tumour’s developmental origin, especially in medulloblastoma.

SHH medulloblastoma

Characterized by activation of the Sonic Hedgehog pathway, this subtype shows variability in prognosis depending on TP53 mutation status and is characterized by chromosome 9q deletions, desmoplastic/nodular histology and mutations in SHH-pathway genes.

Single-cell epigenomics

A technique that focuses on analysing epigenetic modifications, such as DNA methylation and histone modifications, at the single-cell level enabling the elucidation of heterogeneity in epigenetic states across individual cells.

Small round cell sarcoma

A small round cell tumour that encompasses a group of undifferentiated sarcomas of bone and soft tissue, including Ewing sarcoma, distinguished historically by the small, round, blue-cell morphology under light microscopy.

Spatial transcriptomics

A technique that maps the gene expression profiles of tissues in a spatially resolved manner, highlighting the spatial heterogeneity of cellular processes.

Sympathetic differentiation state

A developmental phase where neural crest-derived progenitors progress towards becoming mature sympathetic neurons.

Temozolomide

An oral chemotherapy drug used to treat certain types of tumours. It is an alkylating agent delivering a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine). The primary cytotoxic lesion, O6-methylguanine, can be removed by methylguanine methyltransferase (MGMT) or tolerated in mismatch repair (MMR)-deficient tumours, both of which can lead to drug resistance.

Topologically associating domains

(TADs). The regions with relatively high intradomain DNA interaction frequencies as measured by Hi-C chromosome conformation capture data that form 3D structural units of the genome constraining the interactions between regulatory DNA elements, such as enhancers and promoters and their target genes.

Ultraviolet-light mutational signature

A distinct pattern of genomic mutations, predominantly characterized by pyrimidine–pyrimidine photodimers, which is indicative of damage caused by ultraviolet radiation.

Ureteric bud

An embryonic structure that forms the drainage system of the kidney, and anomalies in its development are implicated in the aetiology of Wilms’ tumour.

Wilms tumour

The most common renal cancer in infants and children, with an incidence of 10.4 cases per million children aged younger than 15 years, featuring a slightly higher occurrence in unilateral than bilateral cases, and associated with various congenital malformation syndromes in about 10% of cases.

WNT medulloblastoma

Identified by activation of the WNT signalling pathway predominantly caused by mutations in the gene catenin-β1 (CTNNB1), this subtype is associated with the best prognosis among all medulloblastoma subtypes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, W., Roberts, C.W.M. et al. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer (2024). https://doi.org/10.1038/s41568-024-00684-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41568-024-00684-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer