Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extrachromosomal DNA in cancer

Abstract

Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ecDNA promotes tumoreginesis and tumour heterogeneity.
Fig. 2: Mechanisms that facilitate ecDNA biogenesis.
Fig. 3: Life cycle of ecDNA.

Similar content being viewed by others

References

  1. Cox, D., Yuncken, C. & Spriggs, A. Minute chromatin bodies in malignant tumours of childhood. Lancet 286, 55–58 (1965).

    Article  Google Scholar 

  2. Spriggs, A. I., Boddington, M. M. & Clarke, C. M. Chromosomes of human cancer cells. Br. Med. J. 2, 1431 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoff, D. D. V., Needham-VanDevanter, D. R., Yucel, J., Windle, B. E. & Wahl, G. M. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc. Natl Acad. Sci. USA 85, 4804–4808 (1988).

    Article  Google Scholar 

  4. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019). This study utilize a multidisciplinary approach combining ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing to reveal that oncogenes carried on ecDNA in cancer have high expression, owing to the enhanced accessibility of ecDNA and ultra-long-range active chromatin contacts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020). This study, based on computational analysis of WGS data from 3,212 patients with cancer, reveals that ecDNA amplification is a common phenomenon in various cancer types that results in enhanced oncogene transcription, chromatin accessibility and poor patient survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yi, E. et al. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer. Cancer Discov. 12, 468–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Lange, J. T. et al. The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat. Genet. 54, 1527–1533 (2022). This study demonstrates that the random inheritance of ecDNA in cancer leads to significant intra-tumoural ecDNA copy number diversity, enabling rapid adaptation to metabolic stresses and targeted therapies, thereby contributing to the aggressive behaviour of ecDNA-containing cancers and underscoring the clinical impact of non-chromosomal oncogene inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaufman, R. J., Brown, P. C. & Schimke, R. T. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl Acad. Sci. USA 76, 5669–5673 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takayama, S. & Uwaike, Y. Analysis of the replication mode of double minutes using the PCC technique combined with BrdUrd labeling. Chromosoma 97, 198–203 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Barker, P. E. & Hsu, T. C. Are double minutes chromosomes? Exp. Cell Res. 113, 457–458 (1978).

    Article  Google Scholar 

  11. de Salum, S. B. & Larripa, I. Brief communication: minute chromatin bodies in a murine in vitro cell line. J. Natl Cancer Inst. 55, 717–720 (1975).

    Article  PubMed  Google Scholar 

  12. Ruiz, J. C., Choi, K. H., Hoff, D. D., von, Roninson, I. B. & Wahl, G. M. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol. Cell. Biol. 9, 109–115 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Carroll, S. M. et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8, 1525–1533 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017). Through WGS and cytogenic analyses of thousands of samples from 17 different cancer types, this paper reveals the wide prevalence of ecDNA in cancer and hints that ecDNA-mediated oncogene amplification is a driving force underlying tumour heterogeneity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levan, A. & Levan, G. Have double minutes functioning centromeres? Hereditas 88, 81–92 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Hung, K. L. et al. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat. Genet. 54, 1746–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luebeck, J. et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature 616, 798–805 (2023). This study, based on WGS data from patients with oesophageal adenocarcinoma and Barrett’s oesophagus, reveals that ecDNA can develop at early stages in the transition from dysplasia to cancer and that the frequency of ecDNA increases as the disease progresses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021). This study demonstrates that ecDNA forms hubs within the nucleus, facilitating intermolecular enhancer–gene interactions that drive oncogene overexpression in various cancer cell types and primary tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helmsauer, K. et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 11, 5823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, P. C., Beverley, S. M. & Schimke, R. T. Relationship of amplified dihydrofolate reductase genes to double minute chromosomes in unstably resistant mouse fibroblast cell lines. Mol. Cell. Biol. 1, 1077–1083 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Haber, D. A. & Schimke, R. T. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell 26, 355–362 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Kaufman, R. J., Brown, P. C. & Schimke, R. T. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma s-180 cell lines. Mol. Cell. Biol. 1, 1084–1093 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wahl, G. M. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49, 1333–1340 (1989).

    CAS  PubMed  Google Scholar 

  24. Ruiz, J. C. & Wahl, G. M. Chromosomal destabilization during gene amplification. Mol. Cell. Biol. 10, 3056–3066 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alitalo, K., Schwab, M., Lin, C. C., Varmus, H. E. & Bishop, J. M. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-Myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl Acad. Sci. USA 80, 1707–1711 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Hung, K. L., Mischel, P. S. & Chang, H. Y. Gene regulation on extrachromosomal DNA. Nat. Struct. Mol. Biol. 29, 736–744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Z., Wang, B., Liang, H. & Han, L. Pioneering insights of extrachromosomal DNA (ecDNA) generation, action and its implications for cancer therapy. Int. J. Biol. Sci. 18, 4006–4025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abeysinghe, H. R., Cedrone, E., Tyan, T., Xu, J. & Wang, N. Amplification of C-MYC as the origin of the homogeneous staining region in ovarian carcinoma detected by micro-FISH. Cancer Genet. Cytogenet. 114, 136–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Storlazzi, C. T. et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 20, 1198–1206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benner, S. E., Wahl, G. M. & Hoff, D. D. V. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anti-Cancer Drugs 2, 11–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Kohl, N. E. et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Bigner, S. H., Mark, J. & Bigner, D. D. Cytogenetics of human brain tumors. Cancer Genet. Cytogenet. 47, 141–154 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Yoshimoto, M. et al. MYCN gene amplification identification of cell populations containing double minutes and homogeneously staining regions in neuroblastoma tumors. Am. J. Pathol. 155, 1439–1443 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vicario, R. et al. Patterns of HER2 gene amplification and response to anti-HER2 therapies. PloS ONE 10, e0129876 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. McGill, J. R. et al. Double minutes are frequently found in ovarian carcinomas. Cancer Genet. Cytogenet. 71, 125–131 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Purshouse, K. et al. Oncogene expression from extrachromosomal DNA is driven by copy number amplification and does not require spatial clustering in glioblastoma stem cells. eLife 11, e80207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, R. W. & Parsons, R. E. Etiology of super-enhancer reprogramming and activation in cancer. Epigenet. Chromatin 16, 29 (2023).

    Article  CAS  Google Scholar 

  39. Morton, A. R. et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179, 1330–1341.e13 (2019). This research highlights the importance of co-amplification of non-coding DNA regions beyond the borders of oncogenes in multiple cancer types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 52, 29–34 (2020). This study investigates the landscape of extrachromosomal circular DNA in neuroblastoma, revealing a comprehensive catalogue of somatically acquired circular DNAs that contribute to oncogenic remodelling through chimeric circularization and reintegration into the linear genome.

    Article  CAS  PubMed  Google Scholar 

  41. Weiser, N. E., Hung, K. L. & Chang, H. Y. Oncogene convergence in extrachromosomal DNA hubs. Cancer Discov. 12, OF1–OF4 (2022).

    Article  Google Scholar 

  42. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu, Y. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39, 694–707.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, Y., Gong, L. & Wei, C.-L. Guilt by association: ecDNA as a mobile transactivator in cancer. Trends Cancer 8, 747–758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vendramin, R., Litchfield, K. & Swanton, C. Cancer evolution: Darwin and beyond. EMBO J. 40, e108389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lacina, L. et al. Evolution of cancer progression in the context of Darwinism. Anticancer Res. 39, 1–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Comaills, V. & Castellano-Pozo, M. Chromosomal instability in genome evolution: from cancer to macroevolution. Biology 12, 671 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bailey, C., Shoura, M. J., Mischel, P. S. & Swanton, C. Extrachromosomal DNA — relieving heredity constraints, accelerating tumour evolution. Ann. Oncol. 31, 884–893 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, K. et al. Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathol. 137, 123–137 (2019).

    Article  PubMed  Google Scholar 

  51. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This study reveals that chromothripsis is a major driver of circular ecDNA generation.

    Article  CAS  PubMed  Google Scholar 

  52. Chang, L. et al. Single‐cell third‐generation sequencing‐based multi‐omics uncovers gene expression changes governed by ecDNA and structural variants in cancer cells. Clin. Transl. Med. 13, e1351 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanborn, J. Z. et al. Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons. Cancer Res. 73, 6036–6045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deshpande, V. et al. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat. Commun. 10, 392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bergstrom, E. N. et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature 602, 510–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dharanipragada, P. et al. Blocking genomic instability prevents acquired resistance to MAPK inhibitor therapy in melanoma. Cancer Discov. 13, 880–909 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. González, R. C. et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat. Genet. 55, 880–890 (2023).

    Article  Google Scholar 

  58. Vogt, N. et al. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc. Natl Acad. Sci. USA 101, 11368–11373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roy, N. V. et al. Translocation–excision–deletion–amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1. Genes Chromosom. Cancer 45, 107–117 (2006).

    Article  PubMed  Google Scholar 

  60. L′Abbate, A. et al. MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia 32, 2152–2166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. L’Abbate, A. et al. Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. Nucleic Acids Res. 42, 9131–9145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zuberi, L., Adeyinka, A. & Kuriakose, P. Rapid response to induction in a case of acute promyelocytic leukemia with MYC amplification on double minutes at diagnosis. Cancer Genet. Cytogenet. 198, 170–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Møller, H. D. et al. CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res. 46, gky767 (2018).

    Google Scholar 

  65. Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. A., Carvalho, C. M. B. & Lupski, J. R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rosswog, C. et al. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nat. Genet. 53, 1673–1685 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Murnane, J. P. Telomere dysfunction and chromosome instability. Mutat. Res. Fundam. Mol. Mech. Mutagen. 730, 28–36 (2012).

    Article  CAS  Google Scholar 

  73. Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl Acad. Sci. USA 97, 5357–5362 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, J. J.-K. et al. ERα-associated translocations underlie oncogene amplifications in breast cancer. Nature 618, 1024–1032 (2023). This study investigates the origin of focal copy-number amplifications, a common oncogenic event, in breast cancer, revealing a mechanism termed translocation–bridge amplification, which involves inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Balaban-Malenbaum, G. & Gilbert, F. Double minute chromosomes and the homogeneously staining regions in chromosomes of a human neuroblastoma cell line. Science 198, 739–741 (1977).

    Article  CAS  PubMed  Google Scholar 

  76. Lo, A. W. L. et al. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 4, 531–538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barker, P. E., Drwinga, H. L., Hittelman, W. N. & Maddox, A.-M. Double minutes replicate once during S phase of the cell cycle. Exp. Cell Res. 130, 353–360 (1980).

    Article  CAS  PubMed  Google Scholar 

  78. Lima-de-Faria, A. & Jaworska, H. Late DNA synthesis in heterochromatin. Nature 217, 138–142 (1968).

    Article  CAS  PubMed  Google Scholar 

  79. Itoh, N. & Shimizu, N. DNA replication-dependent intranuclear relocation of double minute chromatin. J. Cell Sci. 111, 3275–3285 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Snapka, R. M. & Varshavsky, A. Loss of unstably amplified dihydrofolate reductase genes from mouse cells is greatly accelerated by hydroxyurea. Proc. Natl Acad. Sci. USA 80, 7533–7537 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kaufman, R. J. & Schimke, R. T. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol. Cell. Biol. 1, 1069–1076 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Kanda, T., Otter, M. & Wahl, G. M. Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. J. Cell Sci. 114, 49–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Hamkalo, B. A., Farnham, P. J., Johnston, R. & Schimke, R. T. Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. Proc. Natl Acad. Sci. USA 82, 1126–1130 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng, X. et al. Double minute chromosomes in mouse methotrexate-resistant cells studied by atomic force microscopy. Biochem. Biophys. Res. Commun. 346, 1228–1233 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Trivedi, P., Steele, C. D., Au, F. K. C., Alexandrov, L. B. & Cleveland, D. W. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 618, 1049–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, Y.-F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bode, J. et al. The hitchhiking principle: optimizing episomal vectors for the use in gene therapy and biotechnology. Gene Ther. Mol. Biol. 6, 33–46 (2001).

    Google Scholar 

  89. Huang, K.-C., Yamasaki, E. F. & Snapka, R. M. Maintenance of episomal SV40 genomes in GM637 human fibroblasts. Virology 262, 457–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Piirsoo, M., Ustav, E., Mandel, T., Stenlund, A. & Ustav, M. Cis and trans requirements for stable episomal maintenance of the BPV‐1 replicator. EMBO J. 15, 1–11 ( (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohshima, K., Suzumiya, J., Kanda, M., Kato, A. & Kikuchi, M. Integrated and episomal forms of Epstein–Barr virus (EBV) in EBV associated disease. Cancer Lett. 122, 43–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Beverley, S. M., Coderre, J. A., Santi, D. V. & Schimke, R. T. Unstable DNA amplifications in methotrexate resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell 38, 431–439 (1984).

    Article  CAS  PubMed  Google Scholar 

  93. Saito-Adachi, M. et al. Oncogenic structural aberration landscape in gastric cancer genomes. Nat. Commun. 14, 3688 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shimizu, N., Hashizume, T., Shingaki, K. & Kawamoto, J. Amplification of plasmids containing a mammalian replication initiation region is mediated by controllable conflict between replication and transcription. Cancer Res. 63, 5281–5290 (2003).

    CAS  PubMed  Google Scholar 

  95. Shimizu, N., Miura, Y., Sakamoto, Y. & Tsutsui, K. Plasmids with a mammalian replication origin and a matrix attachment region initiate the event similar to gene amplification. Cancer Res. 61, 6987–6990 (2001).

    CAS  PubMed  Google Scholar 

  96. Muraki, K. & Murnane, J. P. The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes Genet. Syst. 92, 135–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Shimizu, N., Misaka, N., Utani, K. & Nonselective, D. N. A. Damage induced by a replication inhibitor results in the selective elimination of extrachromosomal double minutes from human cancer cells. Genes Chromosomes Cancer 46, 865–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Yu, L. et al. Gemcitabine eliminates double minute chromosomes from human ovarian cancer cells. PloS ONE 8, e71988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoff, D. D. V. et al. Hydroxyurea accelerates loss of extrachromosomally amplified genes from tumor cells. Cancer Res. 51, 6273–6279 (1991).

    Google Scholar 

  100. Hintzsche, H. et al. Fate of micronuclei and micronucleated cells. Mutat. Res. Rev. Mutat. Res. 771, 85–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, T. et al. Extrachromosomal DNA formation enables tumor immune escape potentially through regulating antigen presentation gene expression. Sci. Rep. 12, 3590 (2022). This study explores the relationship between ecDNA and immune evasion in cancer, finding that the presence of ecDNA is associated with markers of tumour immune evasion, suggesting that cancer cells may use ecDNA as a mechanism to escape immune surveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Groves, I. J. & Coleman, N. Human papillomavirus genome integration in squamous carcinogenesis: what have next‐generation sequencing studies taught us? J. Pathol. 245, 9–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Morgan, I., DiNardo, L. & Windle, B. Integration of human papillomavirus genomes in head and neck cancer: is it time to consider a paradigm shift? Viruses 9, 208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chowdhry S. et al. Tumors driven by oncogene amplified extrachromosomal DNA (ecDNA) demonstrate enhanced sensitivity to cell cycle checkpoint kinase 1 (CHK1) inhibition. Cancer Res. 83, 1626 (2023).

    Article  Google Scholar 

  105. US National Library of Medicine. Study of the CHK1 inhibitor BBI-355, an ecDNA-directed therapy, in subjects with tumors with oncogene amplifications (POTENTIATE). ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT05827614 (2023).

  106. Pradella, D. et al. Immortalization and transformation of primary cells mediated by engineered ecDNAs. Preprint at bioRxiv https://doi.org/10.1101/2023.06.25.546239 (2023).

  107. Sahajpal, N. S., Barseghyan, H., Kolhe, R., Hastie, A. & Chaubey, A. Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses. Genes 12, 398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rajkumar, U. et al. EcSeg: semantic segmentation of metaphase images containing extrachromosomal DNA. iScience 21, 428–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cohen, S. & Lavi, S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol. Cell. Biol. 16, 2002–2014 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kumar, P. et al. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv. 6, eaba2489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Møller, H. D. et al. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J. Vis. Exp. https://doi.org/10.3791/54239 (2016).

  112. Li, G. et al. Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genom. 15, S11 (2014).

    Article  Google Scholar 

  113. Li, F. et al. FLED: a full-length eccDNA detector for long-reads sequencing data. Brief. Bioinform. 24, bbad388 (2023).

    Article  PubMed  Google Scholar 

  114. Mann, L., Seibt, K. M., Weber, B. & Heitkam, T. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data. BMC Bioinform. 23, 40 (2022).

    Article  CAS  Google Scholar 

  115. Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science https://doi.org/10.1126/science.abl9283 (2022).

Download references

Acknowledgements

This work was delivered as part of the eDyNAmiC team supported by the Cancer Grand Challenges partnership funded by Cancer Research UK (CRUK) (P.M. and H.C., CGCATF-2021/100012) and the National Cancer Institute (P.M. and H.C., OT2CA278688). This study was also supported by a grant from the National Brain Tumour Society (P.S.M.) and National Institutes of Health (NIH) R01-CA238379 (P.S.M.). X.Y. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2474-22). In addition, we thank members of Chang and Mischel labs for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Paul Mischel or Howard Chang.

Ethics declarations

Competing interests

H.C. is a co-founder of Accent Therapeutics, Boundless Bio, Cartography Biosciences and Orbital Therapeutics, and is an adviser to 10x Genomics, Arsenal Biosciences, Chroma Medicine and Spring Discovery. P.M. is a co-founder of, chairs the scientific advisory board (SAB) of and has equity interest in Boundless Bio. P.M. is also an adviser with equity for Asteroid Therapeutics. X.Y declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Tatsuhrio Shibata, Andrew Futreal and Anton Henssen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Mitelman database: https://mitelmandatabase.isb-cgc.org

Glossary

Breakage–fusion–bridge (BFB) cycle

A mechanism of chromosomal instability wherein broken ends of different chromatids or chromosomes fuse.

ChIA-Drop

A chromatin conformation capture technique that combines chromatin immunoprecipitation with droplet-based single-cell sequencing, allowing the investigation of chromatin interactions at the single-cell level.

Chromatin interaction analysis with paired-end-tag sequencing

(ChIA-PET). A genomic technique that enables the identification and mapping of long-range chromatin interactions by combining chromatin immunoprecipitation with paired-end high-throughput sequencing.

Chromosome territories

The specific region of the nucleus that a certain chromosome tends to occupy.

CRISPR-C

A technique that allows in vitro ecDNA generation in cells by inducing double-strand breaks flanking the region of interest upon the delivery of pairs of CRISPR–Cas9 guide RNAs.

Double minutes

(DM). A traditional term for ecDNA that is still indicated in names of most ecDNA-containing cell lines, for example Colo 320DM.

Gene amplification

A process by which the copy number of a specific gene is increased in a cell, leading to heightened expression and contributing to the development and progression of cancer when oncogene is amplified.

Genetic identity by descent

A genetic term indicating the sharing of a specific DNA segment between two or more individuals owing to inheritance from a common ancestor.

Homogeneously staining region

(HSR). A large repetitive region in a chromosome that displays a homogeneous staining pattern when targeted with probes; in this Review, HSR is used to mostly refer to oncogene amplification regions in chromosomes.

Microhomology

The presence of short, identical or nearly identical sequences (typically 2 to 20 base pairs) at or near the ends of two DNA fragments, typically arising during DNA repair or rearrangment to facilitate precise alignment.

Micronuclei

Small, additional nuclei that can form during cell division and contain fragments of chromosomes or entire chromosomes that were not incorporated into the main nucleus.

Non-homologous end joining

(NHEJ). DNA repair mechanism whereby double-stand breaks are ligated without the need for a homologous template.

Nucleosomes

Basic structural units of eukaryotic DNA packaging, consisting of a segment of coiled DNA around eight core histone proteins.

Repli-seq

A genomic technique that involves sequencing the DNA obtained from cells at different stages of the S phase to map DNA replication patterns and identify regions undergoing replication.

Topologically associated domain

(TAD). A genomic region that spatially interacts with itself.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Mischel, P. & Chang, H. Extrachromosomal DNA in cancer. Nat Rev Cancer 24, 261–273 (2024). https://doi.org/10.1038/s41568-024-00669-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00669-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer