Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy

Abstract

Extrachromosomal DNA (ecDNA) amplification has been observed in at least 30 different cancer types and is associated with worse patient outcomes. This has been linked to increased oncogene dosage because both oncogenes and associated enhancers can occupy ecDNA. New data challenge the view that only oncogene dosage is affected by ecDNA, and raises the possibility that ecDNA could disrupt genome-wide gene expression. Recent investigations suggest that ecDNA localizes to specialized nuclear bodies (hubs) in which they can act in trans as ectopic enhancers for genes on other ecDNA or chromosomes. Moreover, ecDNA can reintegrate into the genome, possibly further disrupting the gene regulatory landscape in tumor cells. In this Perspective, we discuss the emerging properties of ecDNA and highlight promising avenues to exploit this new knowledge for the development of ecDNA-directed therapies for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic view of noncanonical ecDNA activities related to genomic and spatial mobility.
Fig. 2: Formation and reintegration of ecDNA.
Fig. 3: ecDNA interactions in cis and in trans.
Fig. 4: Potential ecDNA-directed therapies.

Similar content being viewed by others

References

  1. Nowell, P. C. & Hungerford, D. A. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst. 25, 85–109 (1960).

    CAS  PubMed  Google Scholar 

  2. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  3. Mitelman, F. et al. Mitelman database of chromosome aberrations and gene fusions in cancer. https://www.scienceopen.com/document?vid=9169110a-2e31-415d-8e0a-40946decb158 (2014).

  4. Biedler, J. & Spengler, B. Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science 191, 185–187 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Mitelman, F. & Levan, G. Clustering of aberrations to specific chromosomes in human neoplasms. II. A survey of 287 neoplasms. Hereditas 82, 167–174 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Cox, D., Yuncken, C. & Spriggs, A. Minute chromatin bodies in malignant tumours of childhood. Lancet 286, 55–58 (1965).

    Article  Google Scholar 

  7. van Roy, N. et al. Translocation-excision-deletion-amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1. Genes Chromosomes Cancer 45, 107–117 (2006).

    Article  PubMed  Google Scholar 

  8. Kohl, N. E. et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakhdari, A. et al. Homogeneously staining region (hsr) on chromosome 11 is highly specific for KMT2A amplification in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Cancer Genet. 238, 18–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Moreau, L. A. et al. Does MYCN amplification manifested as homogeneously staining regions at diagnosis predict a worse outcome in children with neuroblastoma? A Children’s Oncology Group study. Clin. Cancer Res. 12, 5693–5697 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Christiansen, J. H. et al. Extrachromosomal DNA (ecDNA) carrying amplified oncogenes as a biomarker for insensitivity to pembrolizumab treatment in gastric cancer patients. J. Clin. Oncol. 38, 3123–3123 (2020).

    Article  Google Scholar 

  13. Ruiz, J. C., Choi, K. H., von Hoff, D. D., Roninson, I. B. & Wahl, G. M. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol. Cell. Biol. 9, 109–115 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xing, J. et al. Progress on the role of extrachromosomal DNA in tumor pathogenesis and evolution. Clin. Genet. 99, 503–512 (2020).

    Article  PubMed  Google Scholar 

  16. Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lange, J. T. et al. Principles of ecDNA random inheritance drive rapid genome change and therapy. Preprint at https://www.biorxiv.org/content/10.1101/2021.06.11.447968v1 (2021).

  18. Wahl, G. M. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49, 1333–1340 (1989).

    CAS  PubMed  Google Scholar 

  19. Bailey, C., Shoura, M. J., Mischel, P. S. & Swanton, C. Extrachromosomal DNA—relieving heredity constraints, accelerating tumour evolution. Ann. Oncol. 31, 884–893 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Kuttler, F. & Mai, S. Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Semin. Cancer Biol. 17, 56–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Carroll, S. M. et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8, 1525–1533 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Oettinger, M. A., Schatz, D., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Paulsen, T., Malapati, P., Eki, R., Abbas, T. & Dutta, A. EccDNA formation is dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA double-strand break. Preprint at https://www.biorxiv.org/content/10.1101/2020.12.03.410480v1 (2020).

  25. Møller, H. D., Parsons, L., Jørgensen, T. S., Botstein, D. & Regenberg, B. Extrachromosomal circular DNA is common in yeast. Proc. Natl Acad. Sci. USA 112, 3114–3122 (2015).

    Article  Google Scholar 

  26. Storlazzi, C. T. et al. Gene amplification as doubleminutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 20, 1198–1206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Storlazzi, C. T. et al. MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum. Mol. Genet. 15, 933–942 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Gibaud, A. et al. Extrachromosomal amplification mechanisms in a glioma with amplified sequences from multiple chromosome loci. Hum. Mol. Genet. 19, 1276–1285 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ly, P. & Cleveland, D. W. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol. 27, 917–930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, X.-K. et al. Extrachromosomal DNA is associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.02.450861v1 (2021).

  33. Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L’abbate, A. et al. Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. Nucleic Acids Res. 42, 9131–9145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liao, Z. et al. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. Biochim. Biophys. Acta Rev. Cancer 1874, 188392 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka, H. & Watanabe, T. Mechanisms underlying recurrent genomic amplification in human cancers. Trends Cancer 6, 462–477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coquelle, A., Rozier, L., Dutrillaux, B. & Debatisse, M. Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 21, 7671–7679 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu, N., Hashizume, T., Shingaki, K. & Kawamoto, J.-K. Amplification of plasmids containing a mammalian replication initiation region is mediated by controllable conflict between replication and transcription. Cancer Res. 63, 5281–5290 (2003).

    CAS  PubMed  Google Scholar 

  40. Shimizu, N. Extrachromosomal double minutes and chromosomal homogeneously staining regions as probes for chromosome research. Cytogenet. Genome Res. 124, 312–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Oobatake, Y. & Shimizu, N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 59, 133–143 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 52, 29–34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shimizu, N., Shingaki, K., Kaneko-Sasaguri, Y., Hashizume, T. & Kanda, T. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp. Cell. Res. 302, 233–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Windle, B. E. & Wahl, G. M. Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat. Res. 276, 99–224 (1992).

    Article  Google Scholar 

  46. Ruiz, J. C. & Wahl, G. M. Chromosomal destabilization during gene amplification. Mol. Cell. Biol. 10, 3056–3066 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Helmsauer, K. et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 11, 5823 (2020).

  48. Morton, A. R. et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179, 1330–1341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilbert, F., Balaban, G., Brangman, D., Herrmann, N. & Lister, A. Homogeneously staining regions and tumorigenicity. Int. J. Cancer 31, 765–768 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Garcillán-Barcia, M. P., Alvarado, A. & de la Cruz, F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol. Rev. 35, 936–956 (2011).

    Article  PubMed  Google Scholar 

  51. Shimizu, N., Itoh, N., Utiyama, H. & Wahl, G. M. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J. Cell Biol. 140, 1307–1320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ambros, I. M. et al. Neuroblastoma cells can actively eliminate supernumerary MYCN gene copies by micronucleus formation—sign of tumour cell revertance? Eur. J. Cancer 33, 2043–2049 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. von Hoff, D. D. et al. Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity. Proc. Natl Acad. Sci. USA 89, 8165–8169 (1992).

    Article  Google Scholar 

  54. Itoh, N. & Shimizu, N. DNA replication-dependent intranuclear relocation of double minute chromatin. J. Cell Sci. 111, 3275–3285 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu, N., Ochi, T. & Itonaga, K. Replication timing of amplified genetic regions relates to intranuclear localization but not to genetic activity or G/R band. Exp. Cell. Res. 268, 201–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nevaldine, B. H., Rizwana, R. & Hahn, P. J. Differential sensitivity of double minute chromosomes to hydroxyurea treatment in cultured methotrexate-resistant mouse cells. Mutat. Res. Genomics 406, 55–62 (1999).

    Article  CAS  Google Scholar 

  58. Prochazka, P., Hrabeta, J., Vícha, A. & Eckschlager, T. Expulsion of amplified MYCN from homogenously staining chromosomal regions in neuroblastoma cell lines after cultivation with cisplatin, doxorubicin, hydroxyurea, and vincristine. Cancer Genet. Cytogenet. 196, 96–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Narath, R. et al. Induction of senescence in MYCN amplified neuroblastoma cell lines by hydroxyurea. Genes Chromosomes Cancer 46, 130–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Shimizu, N. et al. Loss of amplified c-myc genes in the spontaneously differentiated HL-60 cells. Cancer Res. 54, 3561–3567 (1994).

    CAS  PubMed  Google Scholar 

  61. Eckhardt, S. G. et al. Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-myc. Proc. Natl Acad. Sci. USA 91, 6674–6678 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wrighton, K. W. Genome organization: zooming in on nuclear organization. Nat. Rev. Genet. 18, 269 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Solovei, I. et al. Topology of double minutes (dmins) and homogeneously staining regions (HSRs) in nuclei of Human neuroblastoma cell lines. Genes Chromosomes Cancer 46, 130–140 (2000).

    Google Scholar 

  65. Zhu, Y. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39, 694–707 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Hung, K. L. et al. EcDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Yi, E. et al. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA clusters in cancer. Cancer Discov. 12, 1–16 (2021).

    Google Scholar 

  68. Kanda, T. & Wahl, G. M. The dynamics of acentric chromosomes in cancer cells revealed by GFP-based chromosome labeling strategies. J. Cell. Biochem. Suppl. 35, 107–114 (2000).

    Article  PubMed  Google Scholar 

  69. Kanda, T., Otter, M. & Wahl, G. Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. J. Cell Sci. 114, 49–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Choi, L. M. et al. Telomerase activity by TRAP assay and telomerase RNA (hTR) expression are predictive of outcome in neuroblastoma. Med. Pediatr. Oncol. 35, 647–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Adelman, K. & Martin, B. J. E. ecDNA party bus: bringing the enhancer to you. Mol. Cell 81, 1866–1867 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Decarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schulte, A. et al. Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin. Cancer Res. 18, 1901–1913 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Song, K. et al. Abstract 2036: plasticity and vulnerability associated with extrachromosomal and intrachromosomal BRAF amplifications. Cancer Res. 81, 2036–2036 (2021).

    Article  Google Scholar 

  76. Raymond, E. et al. Effects of hydroxyurea on extrachromosomal DNA in patients with advanced ovarian carcinomas. Clin. Cancer Res. 7, 1171–1180 (2001).

    CAS  PubMed  Google Scholar 

  77. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Henssen, A. et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin. Cancer Res. 22, 2470–2481 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work was not discussed or cited due to space constraints. We thank G. Wahl, K. Astrahantseff, J. Glaser, K. Helmsauer and R. Koche for fruitful discussions. A.G.H. is supported by Deutsche Forschungsgemeinschaft (no. 398299703) and the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 949172).

Author information

Authors and Affiliations

Authors

Contributions

A.G.H wrote the manuscript. E.V.L. designed the figures and contributed to the manuscript text. L.B. contributed to the text and the reference list.

Corresponding author

Correspondence to Anton G. Henssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Peter Scacheri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Leen, E., Brückner, L. & Henssen, A.G. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat Genet 54, 107–114 (2022). https://doi.org/10.1038/s41588-021-01000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-01000-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer