Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond genetics: driving cancer with the tumour microenvironment behind the wheel

Abstract

Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk between transformed cells and the microenvironment induces the cancer stem cell state.
Fig. 2: Epigenetic changes drive tumorigenesis and progression.
Fig. 3: The balance between mutations and the tumour microenvironment drives tumorigenesis and progression.

Similar content being viewed by others

References

  1. Varmus, H. E., Weiss, R. A., Friis, R. R., Levinson, W. & Bishop, J. M. Detection of avian tumor virus-specific nucleotide sequences in avian cell DNAs (reassociation kinetics-RNA tumor viruses-gas antigen-Rous sarcoma virus, chick cells). Proc. Natl Acad. Sci. USA 69, 20–24 (1972). First evidence of an oncogene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra254 (2015).

    Article  Google Scholar 

  5. Hodis, E. et al. Stepwise-edited, human melanoma models reveal mutations’ effect on tumor and microenvironment. Science 376, eabi8175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990). A study suggesting that sequential accumulation of oncogenes drives colorectal cancer initiation, progression and metastasis.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan, S. et al. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 612, 555–563 (2022). Deciphers miscommunication between an oncogenic HRAS skin stem cell and its microenvironment that generates a TME and CSC state resembling malignant, invasive SCC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021). Demonstrates how inflammation induces chromatin remodelling to promote pancreatic ductal adenocarcinoma initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hart, J. R. et al. The butterfly effect in cancer: a single base mutation can remodel the cell. Proc. Natl Acad. Sci. USA 112, 1131–1136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sweet-Cordero, E. A. & Biegel, J. A. The genomic landscape of pediatric cancers: implications for diagnosis and treatment. Science 363, 1170–1175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahrmann, E. P. et al. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nat. Genet. 54, 1827–1838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mintz, B. Teratocarcinoma cells as vehicles for introducing mutant genes into mice. Differentiation 13, 25–27 (1979). Early evidence that cancer cells introduced into mouse blastocysts can result in normal embryogenesis and contribute to healthy tissues in adult chimeric mice.

    Article  CAS  PubMed  Google Scholar 

  16. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e614 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985). Early evidence that wounding cooperates with oncogenes to induce tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  20. Vassar, R. & Fuchs, E. Transgenic mice provide new insights into the role of TGF-α during epidermal development and differentiation. Genes Dev. 5, 714–727 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Moses, H. L., Roberts, A. B. & Derynck, R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb. Persp. Biol. 8, a021865 (2016).

    Article  Google Scholar 

  22. Sieweke, M. H., Thompson, N. L., Sporn, M. B. & Bissell, M. J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-β. Science 248, 1656–1660 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA 93, 14025–14029 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  26. Walsh, L. A. & Quail, D. F. Decoding the tumor microenvironment with spatial technologies. Nat. Immunol. 24, 1982–1993 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burdziak, C. et al. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 380, eadd5327 (2023). Confirms that inflammatory cues drive chromatin remodelling and pancreatic cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Almagro, J., Messal, H. A., Elosegui-Artola, A., van Rheenen, J. & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e1114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015). Discovers that TGFβ from the TME drives skin carcinoma progression and resistance to chemotherapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nader, G. P. F. et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 184, 5230–5246.e5222 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112.e114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taniguchi, S. et al. Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369, eaay1813 (2020). Reveals a crosstalk between IL-33 expressed by SCC CSCs and myeloid cells that in response elevate TGFβ to sustain the CSC niche and drives progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 e717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Protani, M., Coory, M. & Martin, J. H. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res. Treat. 123, 627–635 (2010).

    Article  PubMed  Google Scholar 

  41. Tsang, N. M. et al. Overweight and obesity predict better overall survival rates in cancer patients with distant metastases. Cancer Med. 5, 665–675 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Multhoff, G., Molls, M. & Radons, J. Chronic inflammation in cancer development. Front. Immunol. 2, 98 (2011).

    PubMed  Google Scholar 

  43. Hu, B. et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 149, 1207–1220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ellis, S. J. et al. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature 569, 497–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Brown, S. et al. Correction of aberrant growth preserves tissue homeostasis. Nature 548, 334–337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hill, W. et al. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr. Biol. 31, 2550–2560.e2555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alladin, A. et al. Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation. eLife 9, e54066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paul, D. & Hecker, E. On the biochemical mechanism of tumorigenesis in mouse skin. II. Early effects on the biosynthesis of nucleic acids induced by initiating doses of DMBA and by promoting doses of phorbol-12.13-diester TPA. Z. Krebsforsch. 73, 149–163 (1969).

    Article  CAS  PubMed  Google Scholar 

  53. Balmain, A., Ramsden, M., Bowden, G. T. & Smith, J. Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307, 658–660 (1984).

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka, T. et al. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int. J. Cancer 118, 25–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023). Deciphers the impact of air pollutants in the recruitment of pro-tumorigenic myeloid cells in lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017). Seminal discovery that epithelial stem cells can acquire, retain and recall long-term memories of an inflammatory experience with profound implications for chronic inflammation and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021). Identification of pro-tumorigenic inflammatory memory in pancreatic epithelial cells.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e1758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, X. et al. Endogenous expression of HrasG12V induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proc. Natl Acad. Sci. USA 106, 7979–7984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hockel, M. & Vaupel, P. Biological consequences of tumor hypoxia. Semin. Oncol. 28, 36–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  66. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479 e410 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Su, H. et al. Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome. Nature 610, 366–372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koliaraki, V. et al. Innate sensing through mesenchymal TLR4/MyD88 signals promotes spontaneous intestinal tumorigenesis. Cell Rep. 26, 536–545.e534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kay, E. J. et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat. Metab. 4, 693–710 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. McCabe, M. C. et al. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol. 8, 100041 (2020).

    Article  Google Scholar 

  75. Fiore, V. F. et al. Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature 585, 433–439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eberl, M. et al. Tumor architecture and notch signaling modulate drug response in basal cell carcinoma. Cancer Cell 33, 229–243 e224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, J., Abdeen, A. A., Wycislo, K. L., Fan, T. M. & Kilian, K. A. Interfacial geometry dictates cancer cell tumorigenicity. Nat. Mater. 15, 856–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Messal, H. A. et al. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 566, 126–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, B. et al. Stiff matrix induces exosome secretion to promote tumour growth. Nat. Cell Biol. 25, 415–424 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bera, K. et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature 611, 365–373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fernandez-Sanchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature 392, 402–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  85. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beck, B. et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Verginadis, I. I. et al. A stromal integrated stress response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat. Cell Biol. 24, 940–953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oshimori, N., Guo, Y. & Taniguchi, S. An emerging role for cellular crosstalk in the cancer stem cell niche. J. Pathol. 254, 384–394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gadbut, A. P. et al. Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for ras in regulating the expression of muscarinic receptors and G proteins. EMBO J. 16, 7250–7260 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kosztaczky, B. et al. Leptin stimulates endogenous cholesterol synthesis in human monocytes: new role of an old player in atherosclerotic plaque formation. Leptin-induced increase in cholesterol synthesis. Int. J. Biochem. Cell Biol. 39, 1637–1645 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gur-Cohen, S. et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366, 1218–1225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goto, N. et al. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 29, 1246–1261 e1246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Palikuqi, B. et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 29, 1262–1272 e1265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zahalka, A. H. & Frenette, P. S. Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, V. et al. Extrinsic intestinal denervation modulates tumor development in the small intestine of Apc(Min/+) mice. J. Exp. Clin. Cancer Res. 34, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Balood, M. et al. Nociceptor neurons affect cancer immunosurveillance. Nature 611, 405–412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Insco, M. L. et al. Oncogenic CDK13 mutations impede nuclear RNA surveillance. Science 380, eabn7625 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sendoel, A. et al. Translation from unconventional 5’ start sites drives tumour initiation. Nature 541, 494–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mohammad, H. P., Barbash, O. & Creasy, C. L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Jackstadt, R., Hodder, M. C. & Sansom, O. J. WNT and β-catenin in cancer: genes and therapy. Annu. Rev. Cancer Biol. 4, 177–196 (2020).

    Article  Google Scholar 

  104. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oni, T. E. et al. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J. Exp. Med. 217, 20192389 (2020). Identifies SOAT1 as a key regulator of tumour lipid metabolism and RAS oncogenesis in the absence of TP53 mutations.

    Article  Google Scholar 

  106. LaFave, L. M. et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell 38, 212–228 e213 (2020). Discovers epigenomic programmes in lung adenocarcinoma associated with ECM remodelling and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Heide, T. et al. The co-evolution of the genome and epigenome in colorectal cancer. Nature 611, 733–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, Y. et al. The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nat. Cell Biol. 25, 1185–1195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes. Dev. 26, 1326–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chang, C. J. et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1–β-catenin signaling. Cancer Cell 19, 86–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486 e2420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Galka-Marciniak, P., Urbanek-Trzeciak, M. O., Nawrocka, P. M. & Kozlowski, P. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. Nucleic Acids Res. 49, 601–620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ostendorf, B. N. et al. Common germline variants of the human APOE gene modulate melanoma progression and survival. Nat. Med. 26, 1048–1053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zeng, X. Y. et al. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR–ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol. Ther. 20, 956–966 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shen, J. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shankar, S. et al. An essential role for Argonaute 2 in EGFR–KRAS signaling in pancreatic cancer development. Nat. Commun. 11, 2817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Riha, R., Gupta-Saraf, P., Bhanja, P., Badkul, S. & Saha, S. Stressed out — therapeutic implications of er stress related cancer research. Oncomedicine 2, 156–167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Senft, D. & Ronai, Z. E. Adaptive stress responses during tumor metastasis and dormancy. Trends Cancer 2, 429–442 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zucal, C. et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer 15, 855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Cordova, R. A. et al. GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis. eLife 11, e81083 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ng, K. W. et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 616, 563–573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beziaud, L. et al. IFNγ-induced stem-like state of cancer cells as a driver of metastatic progression following immunotherapy. Cell Stem Cell 30, 818–831 e816 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018). Identifies systemic insulin as a key driver of antitumour therapy resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lin, D. et al. WISER survivor trial: combined effect of exercise and weight loss interventions on adiponectin and leptin levels in breast cancer survivors with overweight or obesity. Nutrients 15, 3453 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chung, K. M. et al. Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell 181, 832–847 e818 (2020). Discovers systemic consequences of obesity as a trigger of islet cholecystokinin endocrine secretion and stimulation of cancer development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Aznar Benitah, S. Metastatic-initiating cells and lipid metabolism. Cell Stress. 1, 110–114 (2017).

    Article  PubMed  Google Scholar 

  135. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Collins, N. & Belkaid, Y. Control of immunity via nutritional interventions. Immunity 55, 210–223 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Parigi, S. M., Eldh, M., Larssen, P., Gabrielsson, S. & Villablanca, E. J. Breast milk and solid food shaping intestinal immunity. Front. Immunol. 6, 415 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Levra Levron, C. et al. Tissue memory relies on stem cell priming in distal undamaged areas. Nat. Cell Biol. 25, 740–753 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Plunk, E. C. & Richards, S. M. Epigenetic modifications due to environment, ageing, nutrition, and endocrine disrupting chemicals and their effects on the endocrine system. Int. J. Endocrinol. 2020, 9251980 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lips, E. H. et al. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br. J. Cancer 108, 2172–2177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Abdullah, C., Korkaya, H., Iizuka, S. & Courtneidge, S. A. SRC increases MYC mRNA expression in estrogen receptor-positive breast cancer via mRNA stabilization and inhibition of p53 function. Mol. Cell Biol. 38, e00463–e00517 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Batuello, C. N., Hauck, P. M., Gendron, J. M., Lehman, J. A. & Mayo, L. D. Src phosphorylation converts Mdm2 from a ubiquitinating to a neddylating E3 ligase. Proc. Natl Acad. Sci. USA 112, 1749–1754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fraterman, I. et al. Association between pretreatment emotional distress and neoadjuvant immune checkpoint blockade response in melanoma. Nat. Med. 29, 3090–3099 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Diamantopoulou, Z. et al. The metastatic spread of breast cancer accelerates during sleep. Nature 607, 156–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Million Women Study Collaborators. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362, 419–427 (2003).

  147. Massague, J. & Ganesh, K. Metastasis-initiating cells and ecosystems. Cancer Discov. 11, 971–994 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021). Discovery that epigenetic memories of diverse experiences — including inflammation, migration and plasticity — can accumulate within the stem cells of tissues, with profound implications for cancer and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yu, Q., Jiang, M. & Wu, L. Spatial transcriptomics technology in cancer research. Front. Oncol. 12, 1019111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tran, M. et al. A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages. Front. Immunol. 13, 911873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J. & Behrens, A. Tissue clearing to examine tumour complexity in three dimensions. Nat. Rev. Cancer 21, 718–730 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Calo, A. et al. Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy. Sci. Rep. 10, 15664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  154. Pollard, P. et al. The Apc1322T mouse develops severe polyposis associated with submaximal nuclear β-catenin expression. Gastroenterology 136, 2204–2213 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Smits, R. et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology 114, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Oshima, M. et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Sasai, H., Masaki, M. & Wakitani, K. Suppression of polypogenesis in a new mouse strain with a truncated ApcΔ474 by a novel COX-2 inhibitor, JTE-522. Carcinogenesis 21, 953–958 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348–355 (1998).

    Article  PubMed  Google Scholar 

  159. Saal, L. H. et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat. Genet. 40, 102–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Boelens, M. C. et al. PTEN loss in E-cadherin-deficient mouse mammary epithelial cells rescues apoptosis and results in development of classical invasive lobular carcinoma. Cell Rep. 16, 2087–2101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Narlik-Grassow, M. et al. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One 8, e60277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Malanga, D. et al. AKT1E(1)(7)K is oncogenic in mouse lung and cooperates with chemical carcinogens in inducing lung cancer. PLoS One 11, e0147334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes. Dev. 20, 1496–1510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Drosten, M., Guerra, C. & Barbacid, M. Genetically engineered mouse models of K-Ras-driven lung and pancreatic tumors: validation of therapeutic targets. Cold Spring Harb. Perspect. Med. 8, a031542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  169. Stewart, M. et al. Conditional expression and oncogenicity of c-myc linked to a CD2 gene dominant control region. Int. J. Cancer 53, 1023–1030 (1993).

    Article  CAS  PubMed  Google Scholar 

  170. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    Article  CAS  PubMed  Google Scholar 

  171. Lewis, B. C., Klimstra, D. S. & Varmus, H. E. The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes. Dev. 17, 3127–3138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ehrhardt, A. et al. Development of pulmonary bronchiolo-alveolar adenocarcinomas in transgenic mice overexpressing murine c-myc and epidermal growth factor in alveolar type II pneumocytes. Br. J. Cancer 84, 813–818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Adams, J. R. et al. Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res. 71, 2706–2717 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.Y. is the recipient of an F31 Ruth L. Kirschstein Predoctoral Individual National Research Service fellowship from the National Cancer Institute and a Pilot Award from the Shapiro-Silverberg Fund at The Rockefeller University. J.A. is a MacMillan Family Foundation Awardee of the Life Sciences Research Foundation. E.F. is a Howard Hughes Medical Investigator and is supported by grants from the National Institutes of Health (R01-AR050452, R01-AR31737 and R37-AR27883), the Starr Foundation and the Stavros Niarchos Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elaine Fuchs.

Ethics declarations

Competing interests

All authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Axonogenic factors

Soluble molecules that induce axon elongation.

Caerulein

A ten-amino-acid peptide that induces pancreatic secretion and acute pancreatitis.

Cancer stem cell

(CSC). A subset of tumour-initiating progenitors that mimic some stem cell behaviours and obtain increased resistance to chemotherapy and immunotherapy.

Cre driver

Cell-type-specific recombinase.

Dextran sodium sulfate

(DSS). Sulphated polysaccharide, toxic to colonic epithelial cells and used to induce colitis.

Epigenetic rewiring

Environment-induced changes in chromatin accessibility that affect the biology of cells.

Extracellular matrix

(ECM). Network of fibrous macromolecules between cells.

Organotropism

Preferential invasion of specific distant organs by metastatic cells.

T cell exhaustion

Acquired state of T cell dysfunction.

Tissue architecture

Three-dimensional spatial organization of biological tissues.

Transformed cell

A cell afflicted by an oncogenic genetic alteration, resulting in the development of a neoplastic phenotype.

Translational machinery

Macromolecules (proteins and ribosomal RNA) involved in protein biosynthesis.

Vagotomy

Surgical cauterization of vagus nerve.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Almagro, J. & Fuchs, E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 24, 274–286 (2024). https://doi.org/10.1038/s41568-023-00660-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00660-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer