Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding the basis of histological variation in human cancer

Abstract

Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linking histological differentiation with somatic stem cell differentiation.
Fig. 2: Divergence and convergence in histological and lineage specification of human cancer.
Fig. 3: Molecular and phenotypic evolution of pancreatic ductal adenocarcinoma and neuroendocrine carcinoma of the digestive system.
Fig. 4: Lineage and histological plasticity in prostate and lung adenocarcinoma.

Similar content being viewed by others

References

  1. Force, A. P. T. Pathology: hub and integrator of modern, multidisciplinary [precision] oncology. Clin. Cancer Res. 28, 265–270 (2022).

    Article  Google Scholar 

  2. Chan, J. K. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int. J. Surg. Pathol. 22, 12–32 (2014).

    Article  PubMed  Google Scholar 

  3. Fritz, A. G. International Classification of Diseases for Oncology: ICD-O. Third edn, First revision (World Health Organization, 2013).

  4. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  5. Yachida, S. et al. Comprehensive genomic profiling of neuroendocrine carcinomas of the gastrointestinal system. Cancer Discov. 12, 692–711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

    Article  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  Google Scholar 

  8. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rusch, M. et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat. Commun. 9, 3962 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feinberg, A. P. & Levchenko, A. Epigenetics as a mediator of plasticity in cancer. Science 379, eaaw3835 (2023). This review comprehensively delineates how the epigenetic landscape shapes phenotypic plasticity in cancer and suggests potential strategies that we can take to address it.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, S. Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev. 32, 423–448 (2013).

    Article  PubMed  Google Scholar 

  12. Le Magnen, C., Shen, M. M. & Abate-Shen, C. Lineage plasticity in cancer progression and treatment. Annu. Rev. Cancer Biol. 2, 271–289 (2018).

    Article  PubMed  Google Scholar 

  13. Peto, J. Cancer epidemiology in the last century and the next decade. Nature 411, 390–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, S., Zhu, W., Thompson, P. & Hannun, Y. A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 9, 3490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 21, 619–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Giroux, V. & Rustgi, A. K. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer 17, 594–604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spechler, S. J. & Souza, R. F. Barrett’s esophagus. N. Engl. J. Med. 371, 836–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Lagergren, J., Bergstrom, R., Lindgren, A. & Nyren, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med. 340, 825–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Polk, D. B. & Peek, R. M. Jr Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iwaya, M. et al. Colitis-associated colorectal adenocarcinomas are frequently associated with non-intestinal mucin profiles and loss of SATB2 expression. Mod. Pathol. 32, 884–892 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Beltran, H. et al. Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20, 2846–2850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, L. et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology 163, 154–162 e153 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Choi, I. J. et al. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378, 1085–1095 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, Y. C. et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 150, 1113–1124.e1115 (2016).

    Article  PubMed  Google Scholar 

  27. Singh, S., Garg, S. K., Singh, P. P., Iyer, P. G. & El-Serag, H. B. Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett’s oesophagus: a systematic review and meta-analysis. Gut 63, 1229–1237 (2014).

    Article  PubMed  Google Scholar 

  28. Jankowski, J. A. Z. et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet 392, 400–408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pisco, A. O. & Huang, S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘what does not kill me strengthens me’. Br. J. Cancer 112, 1725–1732 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuijpers, C. C. et al. Interlaboratory variability in the histologic grading of colorectal adenocarcinomas in a nationwide cohort. Am. J. Surg. Pathol. 40, 1100–1108 (2016).

    Article  PubMed  Google Scholar 

  31. Hamilton, P. W., van Diest, P. J., Williams, R. & Gallagher, A. G. Do we see what we think we see? The complexities of morphological assessment. J. Pathol. 218, 285–291 (2009).

    Article  PubMed  Google Scholar 

  32. Weiser, M. R., Gonen, M., Chou, J. F., Kattan, M. W. & Schrag, D. Predicting survival after curative colectomy for cancer: individualizing colon cancer staging. J. Clin. Oncol. 29, 4796–4802 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verburg, F. A., Mader, U., Luster, M. & Reiners, C. Histology does not influence prognosis in differentiated thyroid carcinoma when accounting for age, tumour diameter, invasive growth and metastases. Eur. J. Endocrinol. 160, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Brantsch, K. D. et al. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol. 9, 713–720 (2008).

    Article  PubMed  Google Scholar 

  35. Rakha, E. A. et al. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J. Clin. Oncol. 26, 3153–3158 (2008).

    Article  PubMed  Google Scholar 

  36. Veskimae, E. et al. What is the prognostic and clinical importance of urothelial and nonurothelial histological variants of bladder cancer in predicting oncological outcomes in patients with muscle-invasive and metastatic bladder cancer? A European association of urology muscle invasive and metastatic bladder cancer guidelines panel systematic review. Eur. Urol. Oncol. 2, 625–642 (2019).

    Article  PubMed  Google Scholar 

  37. Oishi, K. et al. Clinicopathologic features of poorly differentiated hepatocellular carcinoma. J. Surg. Oncol. 95, 311–316 (2007).

    Article  PubMed  Google Scholar 

  38. Janot, F. et al. Prognostic value of clinicopathological parameters in head and neck squamous cell carcinoma: a prospective analysis. Br. J. Cancer 73, 531–538 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008). This paper demonstrates the re-activation of embryonic stem cell-related genes in high-grade human tumors, linking differentiation in developmental biology and pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malta, T. M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173, 338–354.e315 (2018). This pan-cancer study formulated the stem cell index, which associates with histological differentiation and predicts patient prognosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Fujii, M. & Sato, T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nat. Mater. 20, 156–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Nanki, K. et al. Divergent routes toward wnt and r-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869.e817 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Kawasaki, K. et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell 183, 1420–1435.e1421 (2020). This paper describes the establishment of patient-derived neuroendocrine neoplasm organoids, their phenotypic characterization and genetic modelling of NEC.

    Article  CAS  PubMed  Google Scholar 

  49. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e310 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell stem Cell 23, 882–897.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kopper, O. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25, 838–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528.e517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, F. J. et al. Single-cell profiling reveals differences between human classical adenocarcinoma and mucinous adenocarcinoma. Commun. Biol. 6, 85 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Su, J. S. et al. Clinicopathological characteristics in the differential diagnosis of hepatoid adenocarcinoma: a literature review. World J. Gastroenterol. 19, 321–327 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Friemel, J. et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin. Cancer Res. 21, 1951–1961 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Park, S. Y., Gonen, M., Kim, H. J., Michor, F. & Polyak, K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J. Clin. Invest. 120, 636–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seol, H. et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod. Pathol. 25, 938–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Bencivenga, M. et al. The amount of signet ring cells is significantly associated with tumour stage and survival in gastric poorly cohesive tumours. J. Surg. Oncol. 121, 1084–1089 (2020).

    Article  PubMed  Google Scholar 

  65. Roviello, F. et al. Signet ring cell percentage in poorly cohesive gastric cancer patients: a potential novel predictor of survival. Eur. J. Surg. Oncol. 48, 561–569 (2022).

    Article  PubMed  Google Scholar 

  66. Togasaki, K. et al. Wnt signaling shapes the histologic variation in diffuse gastric cancer. Gastroenterology 160, 823–830 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Humar, B. et al. Destabilized adhesion in the gastric proliferative zone and c-Src kinase activation mark the development of early diffuse gastric cancer. Cancer Res. 67, 2480–2489 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Tavernari, D. et al. Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. Cancer Discov. 11, 1490–1507 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020). This study demonstrates that squamous cell carcinoma features arise through subclonal molecular evolution in human pancreatic cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, A. et al. Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat. Commun. 9, 894 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. McConechy, M. K. et al. In-depth molecular profiling of the biphasic components of uterine carcinosarcomas. J. Pathol. Clin. Res. 1, 173–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Killcoyne, S. et al. Genomic copy number predicts esophageal cancer years before transformation. Nat. Med. 26, 1726–1732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leggett, B. & Whitehall, V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology 138, 2088–2100 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Sekine, S. et al. Comprehensive characterization of RSPO fusions in colorectal traditional serrated adenomas. Histopathology 71, 601–609 (2017).

    Article  PubMed  Google Scholar 

  75. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kanda, M. et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142, 730–733.e739 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, J. et al. The genomic landscapes of individual melanocytes from human skin. Nature 586, 600–605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e612 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Suda, K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 24, 1777–1789 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370, 82–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Paulson, T. G. et al. Somatic whole genome dynamics of precancer in Barrett’s esophagus reveals features associated with disease progression. Nat. Commun. 13, 2300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stachler, M. D. et al. Detection of mutations in Barrett’s esophagus before progression to high-grade dysplasia or adenocarcinoma. Gastroenterology 155, 156–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang, K. K. et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell 33, 137–150.e135 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Gutierrez-Gonzalez, L. et al. The clonal origins of dysplasia from intestinal metaplasia in the human stomach. Gastroenterology 140, 1251–1260.e1251–1256 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684.e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Gazdar, A. F. et al. The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung. J. Thorac. Oncol. 10, 553–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Seidlitz, T. et al. Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology 157, 1599–1614.e1592 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Hruban, R. H. et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 66, 95–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009). This study shows that intestinal stem cells, but not differentiated cells, serve as the origin of intestinal tumours in mice.

    Article  CAS  PubMed  Google Scholar 

  104. de Sousa, E. M. F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell stem Cell 24, 54–64 (2019).

    Article  Google Scholar 

  105. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015). This study describes the use of CRISPR–Cas9 in introducing cancer-related gene mutations in human intestinal organoids.

    Article  CAS  PubMed  Google Scholar 

  106. Ebisudani, T. et al. Genotype–phenotype mapping of a patient-derived lung cancer organoid biobank identifies NKX2-1-defined Wnt dependency in lung adenocarcinoma. Cell Rep. 42, 112212 (2023). This study shows that the loss of the lung alveolar lineage factor NKX2-1 is associated with the gut-like identity and WNT dependence in human lung adenocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  107. Kawasaki, K. et al. Chromosome engineering of human colon-derived organoids to develop a model of traditional serrated adenoma. Gastroenterology 158, 638–651.e638 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015). This study describes the use of CRSPR–Cas9 in introducing cancer-related gene mutations in human colon organoids.

    Article  CAS  PubMed  Google Scholar 

  109. Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467.e456 (2018). This study shows that the loss of the ductal lineage factor GATA6 induces WNT independence and is associated with disease progression in human pancreatic cancer.

    Article  CAS  PubMed  Google Scholar 

  110. Visvader, J. E. & Stingl, J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes. Dev. 28, 1143–1158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosenbluth, J. M. et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat. Commun. 11, 1711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Park, J. W. et al. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl Acad. Sci. USA 113, 4482–4487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, X. et al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17, 2596–2606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Totoki, Y. et al. Multiancestry genomic and transcriptomic analysis of gastric cancer. Nat. Genet. 55, 581–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lo, W. et al. Associations of CDH1 germline variant location and cancer phenotype in families with hereditary diffuse gastric cancer (HDGC). J. Med. Genet. 56, 370–379 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Grady, W. M. et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat. Genet. 26, 16–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Allred, D. C. et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin. Cancer Res. 14, 370–378 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sflomos, G. et al. A preclinical model for eralpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29, 407–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Sangeetha, N. K. et al. Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome. Gut 69, 317–328 (2020).

    Article  Google Scholar 

  125. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jenkins, M. A. et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology 133, 48–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Reddy, J. et al. Predicting master transcription factors from pan-cancer expression data. Sci. Adv. 7, eabf6123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Balsalobre, A. & Drouin, J. Pioneer factors as master regulators of the epigenome and cell fate. Nat. Rev. Mol. Cell Biol. 23, 449–464 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, H., Yang, Y., Liu, J. & Qian, L. Direct cell reprogramming: approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol. 22, 410–424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bass, A. J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet. 41, 1238–1242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article  Google Scholar 

  137. Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378–384 (2017).

    Article  Google Scholar 

  138. Zhang, X. et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 48, 176–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Kwei, K. A. et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet. 4, e1000081 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e113 (2017).

    Article  Google Scholar 

  141. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grimont, A. et al. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut 64, 1790–1799 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Lin, L. et al. Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 4251–4256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chia, N. Y. et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut 64, 707–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  Google Scholar 

  146. Salari, K. et al. CDX2 is an amplified lineage-survival oncogene in colorectal cancer. Proc. Natl Acad. Sci. USA 109, E3196–E3205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Weir, B. A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Enfield, K. S. S. et al. Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung adenocarcinoma. Nat. Commun. 10, 5438 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yu, H. A. et al. Concurrent alterations in EGFR-mutant lung cancers associated with resistance to EGFR kinase inhibitors and characterization of MTOR as a mediator of resistance. Clin. Cancer Res. 24, 3108–3118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yamaguchi, T., Hosono, Y., Yanagisawa, K. & Takahashi, T. NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 23, 718–723 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  152. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

    Article  Google Scholar 

  153. Chen, D. et al. FOX-A1 contributes to acquisition of chemoresistance in human lung adenocarcinoma via transactivation of SOX5. EBioMedicine 44, 150–161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bushweller, J. H. Targeting transcription factors in cancer — from undruggable to reality. Nat. Rev. Cancer 19, 611–624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Whissell, G. et al. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat. Cell Biol. 16, 695–707 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Tsuji, S. et al. The miR-363-GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. Nat. Commun. 5, 3150 (2014).

    Article  PubMed  Google Scholar 

  159. Zhong, Z., Harmston, N., Wood, K. C., Madan, B. & Virshup, D. M. A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. J. Clin. Invest. 132, e156305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Daniely, Y. et al. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am. J. Physiol. Cell Physiol. 287, C171–C181 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Steurer, S. et al. p63 expression in human tumors and normal tissues: a tissue microarray study on 10,200 tumors. Biomark. Res. 9, 7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Martinelli, P. et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 66, 1665–1676 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Winslow, M. M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Massion, P. P. et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 63, 7113–7121 (2003).

    CAS  PubMed  Google Scholar 

  166. Anagnostou, V. K., Syrigos, K. N., Bepler, G., Homer, R. J. & Rimm, D. L. Thyroid transcription factor 1 is an independent prognostic factor for patients with stage I lung adenocarcinoma. J. Clin. Oncol. 27, 271–278 (2009).

    Article  PubMed  Google Scholar 

  167. Bleu, M. et al. PAX8 and MECOM are interaction partners driving ovarian cancer. Nat. Commun. 12, 2442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wilbertz, T. et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod. Pathol. 24, 944–953 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Holst, F. et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat. Genet. 39, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438.e426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. van Dessel, L. F. et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat. Commun. 10, 5251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Maehara, R. et al. SOX2-silenced squamous cell carcinoma: a highly malignant form of esophageal cancer with SOX2 promoter hypermethylation. Mod. Pathol. 31, 83–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. O’Kane, G. M. et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin. Cancer Res. 26, 4901–4910 (2020).

    Article  PubMed  Google Scholar 

  175. Dalerba, P. et al. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N. Engl. J. Med. 374, 211–222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mehra, R. et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 65, 11259–11264 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Cardnell, R. J. et al. An Integrated molecular analysis of lung adenocarcinomas identifies potential therapeutic targets among TTF1-negative tumors, including DNA repair proteins and Nrf2. Clin. Cancer Res. 21, 3480–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Berghmans, T. et al. Thyroid transcription factor 1 — a new prognostic factor in lung cancer: a meta-analysis. Ann. Oncol. 17, 1673–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Collisson, E. A., Bailey, P., Chang, D. K. & Biankin, A. V. Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220 (2019).

    Article  PubMed  Google Scholar 

  180. Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 155, 1999–2013.e1993 (2018).

    Article  PubMed  Google Scholar 

  181. Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184, 6119–6137.e6126 (2021). This study used single-cell RNA sequencing to show that the tumour environment drives the transition between classical and basal-like states in human pancreatic adenocarcinoma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Krieger, T. G. et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat. Commun. 12, 5826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Grunwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e5518 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Borazanci, E. et al. Adenosquamous carcinoma of the pancreas: molecular characterization of 23 patients along with a literature review. World J. Gastrointest. Oncol. 7, 132–140 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Basturk, O. et al. DeltaNp63 expression in pancreas and pancreatic neoplasia. Mod. Pathol. 18, 1193–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Martens, S. et al. Discovery and 3D imaging of a novel DeltaNp63-expressing basal cell type in human pancreatic ducts with implications in disease. Gut 71, 2030–2042 (2021).

    Article  PubMed  Google Scholar 

  187. Kawasaki, K., Rekhtman, N., Quintanal-Villalonga, A. & Rudin, C. M. Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat. Rev. Clin. Oncol. 20, 16–32 (2023).

    Article  PubMed  Google Scholar 

  188. WHO. Digestive System Tumours. WHO Classification of Tumours 5th edn Vol. 1 (World Health Organization, 2019).

  189. van Riet, J. et al. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat. Commun. 12, 4612 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Griger, J. et al. An integrated cellular and molecular model of gastric neuroendocrine cancer evolution highlights therapeutic targets. Cancer Cell 41, 1327–1344.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Chandrasekar, T., Yang, J. C., Gao, A. C. & Evans, C. P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 4, 365–380 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Adams, E. J. et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 571, 408–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bhatia-Gaur, R. et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bowen, C. et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 60, 6111–6115 (2000).

    CAS  PubMed  Google Scholar 

  196. Lei, Q. et al. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9, 367–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016). This study captures the clonal evolution of human prostate cancer from adenocarcinoma to NEC during androgen deprivation therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tan, H. L. et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20, 890–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Aparicio, A. M. et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin. Cancer Res. 22, 1520–1530 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Guo, H. et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat. Commun. 10, 278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Rotinen, M. et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat. Med. 24, 1887–1898 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Mu, P. et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355, 84–88 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zou, M. et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7, 736–749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bishop, J. L. et al. The master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7, 54–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Lee, J. K. et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lapuk, A. V. et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J. Pathol. 227, 286–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Svensson, C. et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res. 42, 999–1015 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Kim, J. et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 36, 4072–4080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Baca, S. C. et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat. Commun. 12, 1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Park, J. W. et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362, 91–95 (2018). This study demonstrates the transformation of normal human prostate and lung epithelial cells into aggressive NEC using a defined set of genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wang, L. et al. A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes. Proc. Natl Acad. Sci. USA 117, 563–572 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Kleb, B. et al. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas. Epigenetics 11, 184–193 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bai, Y. et al. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J. Biol. Chem. 294, 9911–9923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhang, Y. et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB–EZH2–TSP1 pathway in prostate cancers. Nat. Commun. 9, 4080 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Francis, J. C., Thomsen, M. K., Taketo, M. M. & Swain, A. β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 9, e1003180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Murillo-Garzon, V. & Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol. 14, 683–696 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Bland, T. et al. WLS-Wnt signaling promotes neuroendocrine prostate cancer. iScience 24, 101970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Puca, L. et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat. Commun. 9, 2404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Parwani, A. V. et al. Prostate carcinoma with squamous differentiation: an analysis of 33 cases. Am. J. Surg. Pathol. 28, 651–657 (2004).

    Article  PubMed  Google Scholar 

  224. Labrecque, M. P. et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J. Clin. Invest. 129, 4492–4505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zewdu, R. et al. An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma. eLife 10, e66788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Snyder, E. L. et al. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol. Cell 50, 185–199 (2013). This study shows that NKX2-1 deletion in a mouse model of lung adenocarcinoma induces gut-like phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chang, J. C. et al. Comprehensive molecular and clinicopathologic analysis of 200 pulmonary invasive mucinous adenocarcinomas identifies distinct characteristics of molecular subtypes. Clin. Cancer Res. 27, 4066–4076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Quintanal-Villalonga, A. et al. Multiomic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov. 11, 3028–3047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Balanis, N. G. et al. Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36, 17–34.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Roca, E. et al. Outcome of EGFR-mutated adenocarcinoma NSCLC patients with changed phenotype to squamous cell carcinoma after tyrosine kinase inhibitors: a pooled analysis with an additional case. Lung Cancer 127, 12–18 (2019).

    Article  PubMed  Google Scholar 

  231. Kouros-Mehr, H., Kim, J. W., Bechis, S. K. & Werb, Z. GATA-3 and the regulation of the mammary luminal cell fate. Curr. Opin. Cell Biol. 20, 164–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tsang, J. Y. & Tse, G. M. Breast cancer with neuroendocrine differentiation: an update based on the latest WHO classification. Mod. Pathol. 34, 1062–1073 (2021).

    Article  PubMed  Google Scholar 

  233. Chang, M. T. et al. Small-cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis. Clin. Cancer Res. 24, 1965–1973 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Wang, X. et al. Human papillomavirus integration perspective in small cell cervical carcinoma. Nat. Commun. 13, 5968 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Knepper, T. C. et al. The genomic landscape of merkel cell carcinoma and clinicogenomic biomarkers of response to immune checkpoint inhibitor therapy. Clin. Cancer Res. 25, 5961–5971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Trojer, P. Annual review of cancer biology targeting BET bromodomains in cancer. Annu. Rev. Cancer Biol. 6, 313–336 (2022).

    Article  Google Scholar 

  238. Lee, J. et al. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat. Commun. 8, 14686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Artegiani, B. et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24, 927–943.e926 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Dekkers, J. F. et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J. Natl Cancer Inst. 112, 540–544 (2020).

    Article  PubMed  Google Scholar 

  241. Christodoulidis, G., Zacharoulis, D., Barbanis, S., Katsogridakis, E. & Hatzitheofilou, K. Heterotopic pancreas in the stomach: a case report and literature review. World J. Gastroenterol. 13, 6098–6100 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Maeda, Y. et al. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am. J. Respir. Crit. Care Med. 184, 421–429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Jiang, M. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Storz, P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 296–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zhang, Q. et al. A human Barrett’s esophagus organoid system reveals epithelial-mesenchymal plasticity induced by acid and bile salts. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G598–G614 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sekine, S. et al. Beta-catenin mutations in sporadic fundic gland polyps. Virchows Arch. 440, 381–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  247. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  248. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136.e126 (2015).

    Article  PubMed  Google Scholar 

  249. Driehuis, E. et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9, 852–871 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.F. and T.S. conceptualized the overall focus and content of the article. S.S. contributed substantially to discussion of the content. M.F. wrote the article with input from all authors. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Masayuki Fujii or Toshiro Sato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Nikita Bhalerao, who co-reviewed with Jason Pitarresi; Charles Sawyers; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anaplastic tumours

Undifferentiated tumours with no apparent direction for differentiation.

Bi-lineage progenitors

Progenitor cells that can differentiate into two distinct types of differentiated cell.

Cribriform

A term that derives from the Latin term cribrum and describes a histological appearance characterized by multiple punched-out lumens bridged by tumour cells, sometimes referred to as a Swiss cheese-like pattern.

Endoluminal tumours

Tumours that develop from the inner surface of tract organs.

Fundic polyps

Benign neoplasms that develop mainly in the healthy gastric epithelium without H. pylori infection.

Gastritis

An inflammatory condition of the gastric epithelium, predominantly caused by infection with Helicobacter pylori.

Goblet cell

A type of epithelial cell that produces mucins and secretes them into the tract lumen.

Histotype

Nomenclature to categorize a given tissue based on its histological attributes and nearly similar to a histological subtype.

Licensing pioneer factor

Transcription factor that can bind to closed chromatin and facilitate further association with other transcription factors.

Neuroendocrine carcinoma

A histological variant of carcinoma with poor differentiation and expression of neuroendocrine markers.

Oncofetal markers

Marker proteins expressed in tumours and also in fetal tissues.

Sessile serrated lesion

A type of colon polyp characterized by a serrated ‘saw-like’ surface, L-shaped distortion of the crypt bottom, predominance in the proximal colon, frequent BRAF mutation and CpG island hypermethylation.

Signet ring cell carcinoma

A type of carcinoma that frequently occurs in the stomach that is characterized by ring-like tumour cells with abundant intracellular mucin and an eccentrically located nucleus, which are typically discohesive.

Traditional serrated adenoma

A subtype of serrated lesions characterized by slit-like serrations, eosinophilic cytoplasm, pencillated nuclei, ectopic crypts along the crypt axis, predominance in the distal colon and recurrent RSPO gene fusion.

Tubular adenoma

The most predominant type of colon cancer precursor typically initiated by APC loss of function and characterized by largely conserved normal crypt structures, crypt elongation, increased number of glands and variable degrees of dysplasia.

Ulcerative colitis

An inflammatory bowel disease that causes idiopathic chronic inflammation in the rectal and colonic mucosa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, M., Sekine, S. & Sato, T. Decoding the basis of histological variation in human cancer. Nat Rev Cancer 24, 141–158 (2024). https://doi.org/10.1038/s41568-023-00648-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00648-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer