Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesoscopic and multiscale modelling in materials

Abstract

The concept of multiscale modelling has emerged over the last few decades to describe procedures that seek to simulate continuum-scale behaviour using information gleaned from computational models of finer scales in the system, rather than resorting to empirical constitutive models. A large number of such methods have been developed, taking a range of approaches to bridging across multiple length and time scales. Here we introduce some of the key concepts of multiscale modelling and present a sampling of methods from across several categories of models, including techniques developed in recent years that integrate new fields such as machine learning and material design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelling the effects of manufacturing on performance of composites.

adapted with permission from ref. 68, Wiley

Fig. 2: Physics-based upscaling approaches for coarse graining of MD.

panel a reproduced with permission from ref. 70, Elsevier; panel b adapted with permission from ref. 124, American Chemical Society

Fig. 3: Data-driven model for high-pressure densification of silica glass.

adapted with permission from ref. 77, Springer

Fig. 4: QC modelling of atomistic and continuum lattice systems.

panels reproduced with permission from: a, ref. 86, IOP; b, ref. 92, Elsevier

Fig. 5: Schematic showing a single multigrid V cycle consisting of three scales.
Fig. 6: Gartner cycle for multiscale science and engineering.
Fig. 7: A single level of the multilevel directly computable physics framework.

adapted with permission from from ref. 64, Wiley

Similar content being viewed by others

References

  1. Curtin, W. A. & Miller, R. E. Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2003).

    Article  CAS  Google Scholar 

  2. Fish, J. Bridging the scales in nano engineering and science. J. Nanoparticle Res. 8, 577–594 (2006).

    Article  Google Scholar 

  3. Fish, J. Practical Multiscaling (Wiley, 2014).

  4. Ghosh, S. & Dimiduk, D. (eds). Computational Methods for Microstructure–Property Relationships (Springer, 2011).

  5. National Science and Technology Council CoT National Nanotechnology Initiative Supplement to the President’s FY 2004 Budget (2003).

  6. Ericksen, J. L. On the Cauchy–Born rule. Math. Mech. Solids 13, 199–220 (2008).

    Article  Google Scholar 

  7. Arroyo, M. & Belytschko, T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys. Rev. B 69, 115415 (2004).

    Article  CAS  Google Scholar 

  8. Friesecke, G. & Theil, F. Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass–spring lattice. J. Nonlinear Sci. 12, 445–478 (2002).

    Article  CAS  Google Scholar 

  9. Voigt, W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. (Leipzig) 274, 573–587 (1889).

    Article  Google Scholar 

  10. Reuss, A. Account of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystal. Z. Angew. Math. Mech. 9, 49–58 (1929).

    Article  CAS  Google Scholar 

  11. Dvorak, G. J. & Benveniste, Y. On transformation strains and uniform-fields in multiphase elastic media. Proc. R. Soc. A 437, 291–310 (1992).

    CAS  Google Scholar 

  12. Oskay, C. & Fish, J. Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 196, 1216–1243 (2007).

    Article  Google Scholar 

  13. Yuan, Z. & Fish, J. Multiple scale eigendeformation-based reduced order homogenization. Comput. Methods Appl. Mech. Eng. 198, 2016–2038 (2009).

    Article  Google Scholar 

  14. Bakhvalov, N. S. & Panasenko, G. P. Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials (Kluwer, 1989).

  15. Hill, R. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963).

    Article  Google Scholar 

  16. Tolman, R. C. The Principles of Statistical Mechanics (Clarendon, 1938).

  17. Dirac, P. A. M. The Principles of Quantum Mechanics 4th edn (Clarendon, 1958).

  18. Sanchez-Palencia, E. Non-Homogenous Media and Vibration Theory (Springer, 1980).

  19. Suquet, P. M. in Homogenization Techniques for Composite Media (eds Sanchez-Palencia, E. & Zaoui, A.) 193–279 (Lecture Notes in Physics Vol. 272, Springer, 1985).

  20. Elkhodary, K. I., Greene, M. S., Tang, S., Belytschko, T. & Liu, W. K. Archetype-blending continuum theory. Comput. Methods Appl. Mech. Eng. 254, 309–333 (2013).

    Article  Google Scholar 

  21. Duarte, C. A., Babuska, I. & Oden, J. T. Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77, 215–232 (2000).

    Article  Google Scholar 

  22. Hou, T. Y. & Wu, X. H. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997).

    Article  Google Scholar 

  23. Weinan, E., Engquist, B. & Huang, Z. Y. Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys. Rev. B 67, 092101 (2003).

    Article  CAS  Google Scholar 

  24. Hughes, T. J. R. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995).

    Article  Google Scholar 

  25. Fish, J. & Yuan, Z. Multiscale enrichment based on partition of unity. Int. J. Numer. Methods Eng. 62, 1341–1359 (2005).

    Article  Google Scholar 

  26. Chen, W. & Fish, J. A generalized space–time mathematical homogenization theory for bridging atomistic and continuum scales. Int. J. Numer. Methods Eng. 67, 253–271 (2006).

    Article  Google Scholar 

  27. Fish, J., Chen, W. & Li, R. G. Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions. Comput. Methods Appl. Mech. Eng. 196, 908–922 (2007).

    Article  Google Scholar 

  28. Li, A. Q., Li, R. G. & Fish, J. Generalized mathematical homogenization: from theory to practice. Comput. Methods Appl. Mech. Eng. 197, 3225–3248 (2008).

    Article  Google Scholar 

  29. Fedorenko, R. P. A relaxation method for solving elliptic difference equations. USSR Comput. Math. Math. Phys. 1, 1092–1096 (1962).

    Article  Google Scholar 

  30. Schwarz, H. A. Ueber einige Abbildungsaufgaben. J. Reine Angew. Math. 1869, 105 (1869).

    Article  Google Scholar 

  31. Mote, C. D. Global–local finite element. Int. J. Numer. Methods Eng. 3, 565–574 (1971).

    Article  Google Scholar 

  32. Fish, J. & Belsky, V. Multigrid method for periodic heterogeneous media part 1: convergence studies for one-dimensional case. Comput. Methods Appl. Mech. Eng. 126, 1–16 (1995).

    Article  Google Scholar 

  33. Fish, J. & Belsky, V. Multigrid method for periodic heterogeneous media. II. Multiscale modeling and quality control in multidimensional case. Comput. Methods Appl. Mech. Eng. 126, 17–38 (1995).

    Article  Google Scholar 

  34. Miehe, C. & Bayreuther, C. G. On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007).

    Article  Google Scholar 

  35. Knapek, S. Matrix-dependent multigrid homogenization for diffusion problems. SIAM J. Sci. Comput. 20, 515–533 (1998).

    Article  Google Scholar 

  36. Moulton, J. D., Dendy, J. E. & Hyman, J. M. The black box multigrid numerical homogenization algorithm. J. Comput. Phys. 142, 80–108 (1998).

    Article  Google Scholar 

  37. Tadmor, E. B. & Miller, R. E. Modeling Materials: Continuum, Atomistic, and Multiscale Techniques (Cambridge Univ. Press, 2011).

  38. Liu, W. K., Karpov, E. G., Zhang, S. & Park, H. S. An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578 (2004).

    Article  Google Scholar 

  39. Oden, J. T., Prudhomme, S., Romkes, A. & Buaman, P. Multi-scale modeling of physical phenomena: adaptive control of models. SIAM J. Sci. Comput. 28, 2359–2389 (2006).

    Article  Google Scholar 

  40. Jones, R. E., Templeton, J. A., Wagner, G. J., Olmsted, D. & Modine, N. A. Electron transport enhanced molecular dynamics for metals and semi‐metals. Int. J. Numer. Methods Eng. 83, 940–967 (2010).

    Article  Google Scholar 

  41. Mallat, S. G. A theory for multiresolution signal decomposition—the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989).

    Article  Google Scholar 

  42. Beylkin, G. & Coult, N. A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems. Appl. Comput. Harmon. Anal. 5, 129–155 (1998).

    Article  Google Scholar 

  43. Gilbert, A. C. A comparison of multiresolution and classical one-dimensional homogenization schemes. Appl. Comput. Harmon. Anal. 5, 1–35 (1998).

    Article  Google Scholar 

  44. Mehraeen, S. & Chen, J. S. Wavelet Galerkin method in multi-scale homogenization of heterogeneous media. Int. J. Numer. Methods Eng. 66, 381–403 (2006).

    Article  Google Scholar 

  45. Geers, M. G. D., Kouznetsova, V. G. & Brekelmans, W. A. M. Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010).

    Article  Google Scholar 

  46. Fish, J. & Kuznetsov, S. Computational continua. Int. J. Numer. Methods Eng. 84, 774–802 (2010).

    Article  Google Scholar 

  47. Allaire, G. & Habibi, Z. Second order corrector in the homogenization of a conductive–radiative heat transfer problem. Discret. Contin. Dyn. Syst. B 18, 1–36 (2013).

    Google Scholar 

  48. Saeb, S., Steinmann, P. & Javili, A. Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68 (2016).

  49. Ghosh, S. & Moorthy, S. Elastic–plastic analysis of arbitrary heterogeneous materials with the Voronoi-cell finite-element method. Comput. Methods Appl. Mech. Eng. 121, 373–409 (1995).

    Article  Google Scholar 

  50. Aboudi, J. A continuum theory for fiber-reinforced elastic–viscoplastic composites. Int. J. Eng. Sci. 20, 605–621 (1982).

    Article  CAS  Google Scholar 

  51. Berlyand, L. & Kolpakov, A. Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite. Arch. Ration. Mech. Anal. 159, 179–227 (2001).

    Article  Google Scholar 

  52. Moulinec, H. & Suquet, P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998).

    Article  Google Scholar 

  53. Chen, J. S., Pan, C., Wu, C. T. & Liu, W. K. Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 139, 195–229 (1996).

    Article  Google Scholar 

  54. Cavalcante, M. A. A., Khatam, H. & Pindera, M. J. Homogenization of elastic–plastic periodic materials by FVDAM and FEM approaches—an assessment. Composites B 42, 1713–1730 (2011).

    Article  Google Scholar 

  55. Dvorak, G. J. On uniform fields in heterogeneous media. Proc. R. Soc. A 431, 89–110 (1990).

    Google Scholar 

  56. Paley, M. & Aboudi, J. Micromechanical analysis of composites by the generalized cells model. Mech. Mater. 14, 127–139 (1992).

    Article  Google Scholar 

  57. Moore, B. C. Principal component analysis in linear-systems—controllability, observability, and model-reduction. IEEE Trans. Autom. Control 26, 17–32 (1981).

    Article  Google Scholar 

  58. Green, M. A relative error bound for balanced stochastic truncation. IEEE Trans. Autom. Control 33, 961–965 (1988).

    Article  Google Scholar 

  59. Glover, K. All optimal Hankel-norm approximations of linear-multivariable systems and their L error bounds. Int. J. Control 39, 1115–1193 (1984).

    Article  Google Scholar 

  60. Krysl, P., Lall, S. & Marsden, J. E. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51, 479–504 (2001).

    Article  Google Scholar 

  61. Yvonnet, J. & He, Q. C. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 223, 341–368 (2007).

    Article  Google Scholar 

  62. Le, B. A., Yvonnet, J. & He, Q. C. Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. 104, 1061–1084 (2015).

    Article  Google Scholar 

  63. Bhattacharjee, S. & Matous, K. A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials. J. Comput. Phys. 313, 635–653 (2016).

    Article  Google Scholar 

  64. Fish, J., Yuan, Z. F. & Kumar, R. Computational certification under limited experiments. Int. J. Numer. Methods Eng. 114, 172–195 (2018).

    Article  Google Scholar 

  65. Wang, Y., Cheung, S. W., Chung, E. T., Efendiev, Y. & Wang, M. Deep multiscale model learning. J. Comp. Phys 406, 109071 (2020).

    Article  Google Scholar 

  66. Michel, J. C. & Suquet, P. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput. Methods Appl. Mech. Eng. 193, 5477–5502 (2004).

    Article  Google Scholar 

  67. Fritzen, F. & Bohlke, T. Nonuniform transformation field analysis of materials with morphological anisotropy. Compos. Sci. Technol. 71, 433–442 (2011).

    Article  CAS  Google Scholar 

  68. Yuan, Z. F., Aitharaju, V. & Fish, J. A coupled thermo-chemo-mechanical reduced-order multiscale model for predicting process-induced distortions, residual stresses, and strength. Int. J. Numer. Methods Eng. 121, 1440–1455 (2019).

  69. Hsu, D. D., Xia, W., Song, J. & Keten, S. Glass-transition and side-chain dynamics in thin films: explaining dissimilar free surface effects for polystyrene vs poly(methyl methacrylate). ACS Macro Lett. 5, 481–486 (2016).

    Article  CAS  Google Scholar 

  70. Ruiz, L., Xia, W., Meng, Z. & Keten, S. A coarse-grained model for the mechanical behavior of multi-layer graphene. Carbon 82, 103–115 (2015).

    Article  CAS  Google Scholar 

  71. Bulatov, V. & Cai, W. Computer Simulations of Dislocations Vol. 3 (Oxford Univ. Press, 2006).

  72. Noid, W. G. et al. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128, 244114 (2008).

    Article  CAS  Google Scholar 

  73. Groot, R. D. & Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997).

    Article  CAS  Google Scholar 

  74. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).

    Article  CAS  Google Scholar 

  75. Reith, D., Pütz, M. & Müller‐Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003).

    Article  CAS  Google Scholar 

  76. Xia, W. et al. Energy renormalization for coarse-graining polymers having different segmental structures. Sci. Adv. 5, eaav4683 (2019).

    Article  CAS  Google Scholar 

  77. Xu, W. T., Jiao, Y. & Fish, J. An atomistically-informed multiplicative hyper-elasto-plasticity-damage model for high-pressure induced densification of silica glass. Comput. Mech. 66, 155–187 (2020).

    Article  Google Scholar 

  78. Wang, K. & Sun, W. C. Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Comput. Methods Appl. Mech. Eng. 346, 216–241 (2019).

    Article  Google Scholar 

  79. Liu, Z., Bessa, M. A. & Liu, W. K. Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2016).

    Article  Google Scholar 

  80. Tadmor, E. B., Ortiz, M. & Phillips, R. Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529–1563 (1996).

    Article  Google Scholar 

  81. Kohlhoff, S., Gumbsch, P. & Fischmeister, H. F. Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64, 851–878 (1991).

    Article  Google Scholar 

  82. Xiao, S. P. & Belytschko, T. A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 1645–1669 (2004).

    Article  Google Scholar 

  83. Wagner, G. J. & Liu, W. K. Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190, 249–274 (2003).

    Article  Google Scholar 

  84. Rudd, R. E. & Broughton, J. Q. Concurrent coupling of length scales in solid state systems. Phys. Status Solidi b 217, 251–291 (2000).

    Article  CAS  Google Scholar 

  85. Badia, S. et al. A force-based blending model for atomistic-to-continuum coupling. Int. J. Multiscale Comput. Eng. 5, 387–406 (2007).

    Article  Google Scholar 

  86. Miller, R. E. & Tadmor, E. B. A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17, 053001 (2009).

  87. Luskin, M. & Ortner, C. Atomistic-to-continuum coupling. Acta Numer. 22, 397–508 (2013).

    Article  Google Scholar 

  88. Dupuy, L. M., Tadmor, E. B., Miller, R. E. & Phillips, R. Finite-temperature quasicontinuum: molecular dynamics without all the atoms. Phys. Rev. Lett. 95, 060202 (2005).

    Article  CAS  Google Scholar 

  89. Tadmor, E. B., Legoll, F., Kim, W. K., Dupuy, L. M. & Miller, R. E. Finite-temperature quasi-continuum. Appl. Mech. Rev. 65, 10803–10803 (2013).

    Article  Google Scholar 

  90. Wagner, G. J., Jones, R. E., Templeton, J. A. & Parks, M. L. An atomistic-to-continuum coupling method for heat transfer in solids. Comput. Methods Appl. Mech. Eng. 197, 3351–3365 (2008).

    Article  Google Scholar 

  91. Beex, L. A. A., Peerlings, R. H. J. & Geers, M. G. D. A multiscale quasicontinuum method for lattice models with bond failure and fiber sliding. Comput. Methods Appl. Mech. Eng. 269, 108–122 (2014).

    Article  Google Scholar 

  92. Phlipot, G. P. & Kochmann, D. M. A quasicontinuum theory for the nonlinear mechanical response of general periodic truss lattices. J. Mech. Phys. Solids 124, 758–780 (2019).

    Article  Google Scholar 

  93. Cai, W., de Koning, M., Bulatov, V. V. & Yip, S. Minimizing boundary reflections in coupled-domain simulations. Phys. Rev. Lett. 85, 3213–3216 (2000).

    Article  CAS  Google Scholar 

  94. Li, S., Liu, X., Agrawal, A. & To, A. C. Perfectly matched multiscale simulations for discrete lattice systems: extension to multiple dimensions. Phys. Rev. B 74, 045418 (2006).

  95. Delgado-Buscalioni, R. & Coveney, P. V. USHER: an algorithm for particle insertion in dense fluids. J. Chem. Phys. 119, 978–987 (2003).

    Article  CAS  Google Scholar 

  96. Guo, L., Chen, S. & Robbins, M. O. Multi-scale simulation method for electroosmotic flows. Eur. Phys. J. Spec. Top. 225, 1551–1582 (2016).

    Article  CAS  Google Scholar 

  97. Yushu, D. & Matouš, K. The image-based multiscale multigrid solver, preconditioner, and reduced order model. J. Comput. Phys. 406, 109165–109165 (2020).

    Article  Google Scholar 

  98. Voter A. F. in Radiation Effects in Solids (eds Sickafus, K. E. et al.) (NATO Science Series Vol. 235, Springer, 2007).

  99. Henkelman, G. & Jonsson, H. Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657–9666 (2001).

    Article  CAS  Google Scholar 

  100. Voter, A. F. Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, 13985–13988 (1998).

    Article  Google Scholar 

  101. Sorensen, M. R. & Voter, A. F. Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112, 9599–9606 (2000).

    Article  CAS  Google Scholar 

  102. Voter, A. F., Montalenti, F. & Germann, T. C. Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321–346 (2002).

    Article  CAS  Google Scholar 

  103. Yu, Q. & Fish, J. Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int. J. Solids Struct. 39, 6429–6452 (2002).

    Article  Google Scholar 

  104. Chen, W. & Fish, J. A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J. Appl. Mech. 68, 153–161 (2000).

    Article  Google Scholar 

  105. Oskay, C. & Fish, J. Fatigue life prediction using 2-scale temporal asymptotic homogenization. Int. J. Numer. Methods Eng. 61, 329–359 (2004).

    Article  Google Scholar 

  106. Kevrekidis, I. G. & Samaey, G. Equation-free multiscale computation: algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009).

    Article  CAS  Google Scholar 

  107. Wagner, G. J., Zhou, X. & Plimpton, S. J. Equation-free accelerated simulations of the morphological relaxation of crystal surfaces. Int. J. Multiscale Comput. Eng. 8, 423–439 (2010).

    Article  Google Scholar 

  108. Mosser, L., Dubrule, O. & Blunt, M. J. Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E 96, 043309 (2017).

    Article  Google Scholar 

  109. Yang, Z. et al. Microstructural materials design via deep adversarial learning methodology. J. Mech. Design 140, 111416 (2018).

  110. Voter, A. F. A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106, 4665–4677 (1997).

    Article  CAS  Google Scholar 

  111. Chakraborty, S. & Ghosh, S. Hyperdynamics accelerated concurrent atomistic–continuum model for developing crack propagation models in elastic crystalline materials. Comput. Mater. Sci. 154, 212–224 (2018).

    Article  CAS  Google Scholar 

  112. Kim, W. K., Luskin, M., Perez, D., Voter, A. F. & Tadmor, E. B. Hyper-QC: an accelerated finite-temperature quasicontinuum method using hyperdynamics. J. Mech. Phys. Solids 63, 94–112 (2014).

    Article  Google Scholar 

  113. Kim, W. K. & Tadmor, E. B. Accelerated quasicontinuum: a practical perspective on hyper-QC with application to nanoindentation. Philos. Mag. 97, 2284–2316 (2017).

    Article  CAS  Google Scholar 

  114. Saunders, N. & Miodownik A. P. CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide (Elsevier, 1998).

  115. Olson, G. B. & Kuehmann, C. Materials genomics: from CALPHAD to flight. Scr. Mater. 70, 25–30 (2014).

    Article  CAS  Google Scholar 

  116. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  117. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  118. de Pablo, J. J. et al. New frontiers for the Materials Genome Initiative. NPJ Comput. Mater. 5, 41 (2019).

    Article  Google Scholar 

  119. Blaiszik, B. et al. The Materials Data Facility: data services to advance materials science research. JOM 68, 2045–2052 (2016).

    Article  Google Scholar 

  120. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  121. Mauro, J. C., Tandia, A., Vargheese, K. D., Mauro, Y. Z. & Smedskjaer, M. M. Accelerating the design of functional glasses through modeling. Chem. Mater. 28, 4267–4277 (2016).

    Article  CAS  Google Scholar 

  122. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. NPJ Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  123. Zhao, H. et al. Perspective: NanoMine: a material genome approach for polymer nanocomposites analysis and design. APL Mater. 4, 053204 (2016).

    Article  CAS  Google Scholar 

  124. Hansoge, N. K. et al. Materials by design for stiff and tough hairy nanoparticle assemblies. ACS Nano 12, 7946–7958 (2018).

    Article  CAS  Google Scholar 

  125. Koslowski, M. & Strachan, A. Uncertainty propagation in a multiscale model of nanocrystalline plasticity. Reliab. Eng. Syst. Saf. 96, 1161–1170 (2011).

    Article  Google Scholar 

  126. Kouchmeshky, B. & Zabaras, N. Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Comput. Mater. Sci. 48, 213–227 (2010).

    Article  CAS  Google Scholar 

  127. Bostanabad, R. et al. Uncertainty quantification in multiscale simulation of woven fiber composites. Comput. Methods Appl. Mech. Eng. 338, 506–532 (2018).

    Article  Google Scholar 

  128. Mehrez, L., Fish, J., Aitharaju, V., Rodgers, W. R. & Ghanem, R. A PCE-based multiscale framework for the characterization of uncertainties in complex systems. Comput. Mech. 61, 219–236 (2018).

    Article  Google Scholar 

  129. Salloum, M. & Templeton, J. Inference and uncertainty propagation of atomistically informed continuum constitutive laws, part 2: generalized continuum models based on Gaussian processes. Int. J. Uncertain. Quantif. 4, 171–184 (2013).

  130. Chernatynskiy, A., Phillpot, S. R. & LeSar, R. Uncertainty quantification in multiscale simulation of materials: a prospective. Annu. Rev. Mater. Res. 43, 157–182 (2013).

    Article  CAS  Google Scholar 

  131. Ghanem, R. & Spanos, P. D. Stochastic Finite Elements: a Spectral Approach (Springer, 1991).

  132. Reagan, M. T., Najm, H. N., Ghanem, R. G. & Knio, O. M. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003).

    Article  CAS  Google Scholar 

  133. Mathelin, L., Hussaini, M. Y. & Zang, T. A. Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 38, 209–236 (2005).

    Article  Google Scholar 

  134. Fish, J. & Wu, W. A nonintrusive stochastic multiscale solver. Int. J. Numer. Methods Eng. 88, 862–879 (2011).

    Article  Google Scholar 

  135. Kaminski, M. & Kleiber, M. Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. Comput. Struct. 78, 811–826 (2000).

    Article  Google Scholar 

  136. Liu, Y., Greene, M. S., Chen, W., Dikin, D. A. & Liu, W. K. Computational microstructure characterization and reconstruction for stochastic multiscale material design. Computer-Aided Des. 45, 65–76 (2013).

    Article  Google Scholar 

  137. Lee, H., Brandyberry, M., Tudor, A. & Matous, K. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography. Phys. Rev. E 80, 061301 (2009).

    Article  CAS  Google Scholar 

  138. Kirchdoerfer, T. & Ortiz, M. Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016).

    Article  Google Scholar 

  139. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  Google Scholar 

  140. AlphaSTAR http://www.alphastarcorp.com

  141. Autodesk: Helius Composite https://www.autodesk.com/products/helius-composite/overview

  142. Xstream https://www.e-xstream.com

  143. Altair Multiscale-Designer https://altairhyperworks.com/product/Multiscale-Designer

  144. Templeton, J. A., Jones, R. E., Lee, J. W., Zimmerman, J. A. & Wong, B. M. A long-range electric field solver for molecular dynamics based on atomistic-to-continuum modeling. J. Chem. Theory Comput. 7, 1736–1749 (2011).

    Article  CAS  Google Scholar 

  145. Harrison R. J. et al. MADNESS: a multiresolution, adaptive numerical environment for scientific simulation. SIAM J. Sci. Comput. 38, S123–S142 (2015).

  146. Sridhar, A., Kouznetsova, V. G. & Geers, M. G. D. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum. Comput. Mech. 57, 423–435 (2016).

    Article  CAS  Google Scholar 

  147. Kochmann, D. M., Hopkins, J. B. & Valdevit, L. Multiscale modeling and optimization of the mechanics of hierarchical metamaterials. MRS Bull. 44, 773–781 (2019).

    Article  Google Scholar 

  148. Özdemir, I., Brekelmans, W. A. M. & Geers, M. G. D. Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73, 185–204 (2008).

    Article  Google Scholar 

  149. Ling, J., Kurzawski, A. & Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016).

    Article  CAS  Google Scholar 

  150. Nair, A. K., Warner, D. H., Hennig, R. G. & Curtin, W. A. Coupling quantum and continuum scales to predict crack tip dislocation nucleation. Scr. Mater. 63, 1212–1215 (2010).

    Article  CAS  Google Scholar 

  151. Smith, G. S., Tadmor, E. B., Bernstein, N. & Kaxiras, E. Multiscale simulations of silicon nanoindentation. Acta Mater. 49, 4089–4101 (2001).

    Article  CAS  Google Scholar 

  152. Fish, J. & Chen, W. Discrete-to-continuum bridging based on multigrid principles. Comput. Methods Appl. Mech. Eng. 193, 1693–1711 (2004).

    Article  Google Scholar 

  153. Fish, J., Suvorov, A. & Belsky, V. Hierarchical composite grid method for global–local analysis of laminated composite shells. Appl. Numer. Math. 23, 241–258 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Fish.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fish, J., Wagner, G.J. & Keten, S. Mesoscopic and multiscale modelling in materials. Nat. Mater. 20, 774–786 (2021). https://doi.org/10.1038/s41563-020-00913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00913-0

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics