Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Simulating short-range order in compositionally complex materials

Abstract

In multicomponent materials, short-range order (SRO) is the development of correlated arrangements of atoms at the nanometer scale. Its impact in compositionally complex materials has stimulated an intense debate within the materials science community. Understanding SRO is critical to control the properties of technologically relevant materials, from metallic alloys to functional ceramics. In contrast to long-range order, quantitative characterization of the nature and spatial extent of SRO evades most of the experimentally available techniques. Simulations at the atomistic scale have full access to SRO but face the challenge of accurately sampling high-dimensional configuration spaces to identify the thermodynamic and kinetic conditions at which SRO is formed and what impact it has on material properties. Here we highlight recent progress in computational approaches, such as machine learning-based interatomic potentials, for quantifying and understanding SRO in compositionally complex materials. We briefly recap the key theoretical concepts and methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long- and short-range order.
Fig. 2: Gigantic chemical phase space requires a large amount of computational resources.
Fig. 3: Off-lattice and on-lattice models.
Fig. 4: Consequences of SRO.

Similar content being viewed by others

References

  1. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  Google Scholar 

  2. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article  Google Scholar 

  3. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  Google Scholar 

  4. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article  Google Scholar 

  5. Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011).

    Article  Google Scholar 

  6. Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).

    Article  Google Scholar 

  7. Otto, F. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013).

    Article  Google Scholar 

  8. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    Article  Google Scholar 

  9. Gludovatz, B., George, E. P. & Ritchie, R. O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM 67, 2262–2270 (2015).

    Article  Google Scholar 

  10. Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article  Google Scholar 

  11. Ferrari, A., Lysogorskiy, Y. & Drautz, R. Design of refractory compositionally complex alloys with optimal mechanical properties. Phys. Rev. Mater. 5, 063606 (2021).

    Article  Google Scholar 

  12. Bérardan, D., Franger, S., Dragoe, D., Meena, A. K. & Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL 10, 328–333 (2016).

    Article  Google Scholar 

  13. Bérardan, D., Franger, S., Meena, A. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

    Article  Google Scholar 

  14. Meisenheimer, P., Kratofil, T. & Heron, J. Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 13344 (2017).

    Article  Google Scholar 

  15. Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018).

    Article  Google Scholar 

  16. Ma, Y. et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021).

    Article  Google Scholar 

  17. Wagner, C. et al. Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys. Acta Mater. 227, 117693 (2022).

    Article  Google Scholar 

  18. Zhang, Y., Osetsky, Y. N. & Weber, W. J. Tunable chemical disorder in concentrated alloys: defect physics and radiation performance. Chem. Rev. 122, 789–829 (2021).

    Article  Google Scholar 

  19. Li, Y. et al. Chemical ordering effect on the radiation resistance of a CoNiCrFeMn high-entropy alloy. Comput. Mater. Sci. 214, 111764 (2022).

    Article  Google Scholar 

  20. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  Google Scholar 

  21. Löffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  Google Scholar 

  22. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  Google Scholar 

  23. Zhang, N. et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020).

    Article  Google Scholar 

  24. Cowley, J. An approximate theory of order in alloys. Phys. Rev. 77, 669–675 (1950).

    Article  MATH  Google Scholar 

  25. Norman, N. & Warren, B. E. X-ray measurement of short range order in Ag-Au. J. Appl. Phys. 22, 483 (1951).

    Article  Google Scholar 

  26. Wang, M., Guo, S., Lin, X. & Huang, W. Research on the nucleation and growth of high-entropy alloy. Mater. Lett. 285, 129206 (2021).

    Article  Google Scholar 

  27. Yin, B., Yoshida, S., Tsuji, N. & Curtin, W. A. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat. Commun. 11, 2507 (2020).

    Article  Google Scholar 

  28. Zhou, D. et al. Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy. Scripta Mater. 191, 173–178 (2021).

    Article  Google Scholar 

  29. Zhang, F. X. et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett. 118, 205501 (2017).

    Article  Google Scholar 

  30. Ma, Y. et al. Chemical short-range orders and the induced structural transition in high-entropy alloys. Scripta Mater. 144, 64–68 (2018).

    Article  Google Scholar 

  31. Schönfeld, B. et al. Local order in Cr-Fe-Co-Ni: experiment and electronic structure calculations. Phys. Rev. B 99, 014206 (2019).

    Article  Google Scholar 

  32. Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article  Google Scholar 

  33. Chen, S. et al. Chemical-affinity disparity and exclusivity drive atomic segregation, short-range ordering, and cluster formation in high-entropy alloys. Acta Mater. 206, 116638 (2021).

    Article  Google Scholar 

  34. Abe, T. Effect of short-range ordering in high-entropy alloys. Mater. Trans. 62, 711–718 (2021).

    Article  Google Scholar 

  35. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  MATH  Google Scholar 

  36. Widom, M., Huhn, W. P., Maiti, S. & Steurer, W. Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196–200 (2014).

    Article  Google Scholar 

  37. Tamm, A., Aabloo, A., Klintenberg, M., Stocks, M. & Caro, A. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater. 99, 307–312 (2015).

    Article  Google Scholar 

  38. Feng, W., Qi, Y. & Wang, S. Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals 7, 482 (2017).

    Article  Google Scholar 

  39. Ding, J., Yu, Q., Asta, M. & Ritchie, R. O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl Acad. Sci. USA 115, 8919–8924 (2018).

    Article  Google Scholar 

  40. Sanchez, J. M., Ducastelle, F. & Gratias, D. Generalized cluster description of multicomponent systems. Phys. A 128, 334–350 (1984).

    Article  MathSciNet  Google Scholar 

  41. Daw, M. S. & Baskes, M. I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288 (1983).

    Article  Google Scholar 

  42. Finnis, M. W. & Sinclair, J. E. A simple empirical N-body potential for transition metals. Philos. Mag. A 50, 45–55 (1984).

    Article  Google Scholar 

  43. Walsh, F., Asta, M. & Ritchie, R. O. Magnetically driven short-range order can explain anomalous measurements in CrCoNi. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2020540118 (2021).

  44. Soven, P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809–813 (1967).

    Article  Google Scholar 

  45. Gyorffy, B. Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5, 2382–2384 (1972).

    Article  Google Scholar 

  46. Ducastelle, F. & Gautier, F. Generalized perturbation theory in disordered transitional alloys: applications to the calculation of ordering energies. J. Phys. F 6, 2039 (1976).

    Article  Google Scholar 

  47. Vitos, L. Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications (Springer, 2007).

  48. Singh, P., Smirnov, A. V. & Johnson, D. D. Atomic short-range order and incipient long-range order in high-entropy alloys. Phys. Rev. B 91, 224204 (2015).

    Article  Google Scholar 

  49. Faulkner, J., Stocks, G. M. & Wang, Y. Multiple Scattering Theory; Electronic Structure of Solids (Institute of Physics, 2018).

  50. Kostiuchenko, T., Körmann, F., Neugebauer, J. & Shapeev, A. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. npj Comput. Mater. 5, 55 (2019).

    Article  Google Scholar 

  51. Wolverton, C., Ozoliņš, V. & Zunger, A. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag and Ni-Au. Phys. Rev. B 57, 4332–4348 (1998).

    Article  Google Scholar 

  52. Reichert, H. et al. Competition between order and phase separation in Au-Ni. Phys. Rev. Lett. 95, 235703 (2005).

    Article  Google Scholar 

  53. Zhang, J. et al. Robust data-driven approach for predicting the configurational energy of high entropy alloys. Mater. Design 185, 108247 (2020).

    Article  Google Scholar 

  54. Nataraj, C., Borda, E. J. L., van de Walle, A. & Samanta, A. A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models. Acta Mater. 220, 117269 (2021).

    Article  Google Scholar 

  55. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (O’Reilly Media, 2019).

  56. Shapeev, A. Accurate representation of formation energies of crystalline alloys with many components. Comput. Mater. Sci. 139, 26–30 (2017).

    Article  Google Scholar 

  57. Koren, Y., Bell, R. & Volinsky, C. Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009).

    Article  Google Scholar 

  58. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Sim. 14, 1153–1173 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  59. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  60. Körmann, F. & Sluiter, M. H. Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys. Entropy 18, 403 (2016).

    Article  Google Scholar 

  61. Fernández-Caballero, A., Wróbel, J. S., Mummery, P. M. & Nguyen-Manh, D. Short-range order in high entropy alloys: theoretical formulation and application to Mo-Nb-Ta-VW system. J. Phase Equilib. Diff. 38, 391–403 (2017).

    Article  Google Scholar 

  62. Singh, P., Smirnov, A. V. & Johnson, D. D. Ta-Nb-Mo-W refractory high-entropy alloys: anomalous ordering behavior and its intriguing electronic origin. Phys. Rev. Mater. 2, 055004 (2018).

    Article  Google Scholar 

  63. Grabowski, B. et al. Ab initio vibrational free energies including anharmonicity for multicomponent alloys. npj Comput. Mater. 5, 80 (2019).

    Article  Google Scholar 

  64. Li, Q.-J., Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. 10, 3563 (2019).

    Article  Google Scholar 

  65. Yu, P., Du, J.-P., Shinzato, S., Meng, F.-S. & Ogata, S. Theory of history-dependent multi-layer generalized stacking fault energy—a modeling of the micro-substructure evolution kinetics in chemically ordered medium-entropy alloys. Acta Mater. 224, 117504 (2022).

    Article  Google Scholar 

  66. Niu, C. et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 106, 161906 (2015).

    Article  Google Scholar 

  67. Mizuno, M., Sugita, K. & Araki, H. Prediction of short-range order in CrMnFeCoNi high-entropy alloy. Results Phys. 34, 105285 (2022).

    Article  Google Scholar 

  68. Feng, W., Qi, Y. & Wang, S. Effects of Mn and Al addition on structural and magnetic properties of FeCoNi-based high entropy alloys. Mater. Res. Express 5, 106511 (2018).

    Article  Google Scholar 

  69. Singh, P. et al. Tuning phase stability and short-range order through al doping in (CoCrFeMn)100 − xAlx high-entropy alloys. Phys. Rev. Mater. 3, 075002 (2019).

    Article  Google Scholar 

  70. Koch, L. et al. Local segregation versus irradiation effects in high-entropy alloys: steady-state conditions in a driven system. J. Appl. Phys. 122, 105106 (2017).

    Article  Google Scholar 

  71. Chen, S. et al. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat. Commun. 12, 4953 (2021).

    Article  Google Scholar 

  72. El-Atwani, O. et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 5, eaav2002 (2019).

    Article  Google Scholar 

  73. Sobieraj, D. et al. Chemical short-range order in derivative Cr-Ta-Ti-V-W high entropy alloys from the first-principles thermodynamic study. Phys. Chem. Chem. Phys. 22, 23929–23951 (2020).

    Article  Google Scholar 

  74. Antillon, E., Woodward, C., Rao, S. & Akdim, B. Chemical short range order strengthening in BCC complex concentrated alloys. Acta Mater. 215, 117012 (2021).

    Article  Google Scholar 

  75. Huang, X. et al. Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential. Mater. Design 202, 109560 (2021).

    Article  Google Scholar 

  76. Kostiuchenko, T., Ruban, A. V., Neugebauer, J., Shapeev, A. & Körmann, F. Short-range order in face-centered cubic VCoNi alloys. Phys. Rev. Mater. 4, 113802 (2020).

    Article  Google Scholar 

  77. Antillon, E., Woodward, C., Rao, S. I., Akdim, B. & Parthasarathy, T. Chemical short range order strengthening in a model FCC high entropy alloy. Acta Mater. 190, 29–42 (2020).

    Article  Google Scholar 

  78. Singh, P., Smirnov, A. V., Alam, A. & Johnson, D. D. First-principles prediction of incipient order in arbitrary high-entropy alloys: exemplified in Ti0.25CrFeNiAlx. Acta Mater. 189, 248–254 (2020).

    Article  Google Scholar 

  79. Körmann, F., Kostiuchenko, T., Shapeev, A. & Neugebauer, J. B2 ordering in body-centered-cubic AlNbTiV refractory high-entropy alloys. Phys. Rev. Mater. 5, 053803 (2021).

    Article  Google Scholar 

  80. Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    Article  Google Scholar 

  81. Jiang, B. et al. Probing the local site disorder and distortion in pyrochlore high-entropy oxides. J. Am. Chem. Soc. 143, 4193–4204 (2020).

    Article  Google Scholar 

  82. Wang, S. et al. Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys. Phys. Rev. B 103, 104107 (2021).

    Article  Google Scholar 

  83. Zhang, B., Ding, J. & Ma, E. Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys. Appl. Phys. Lett. 119, 201908 (2021).

    Article  Google Scholar 

  84. He, Q. et al. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Mater. 216, 117140 (2021).

    Article  Google Scholar 

  85. Pei, Z., Li, R., Gao, M. C. & Stocks, G. M. Statistics of the NiCoCr medium-entropy alloy: novel aspects of an old puzzle. npj Comput. Mater. 6, 122 (2020).

    Article  Google Scholar 

  86. Singh, P. & Johnson, D. D. Designing order-disorder transformation in high-entropy ferritic steels. J. Mater. Res. 37, 136–144 (2022).

    Article  Google Scholar 

  87. Zhang, Y. H., Zhuang, Y., Hu, A., Kai, J.-J. & Liu, C. T. The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Mater. 130, 96–99 (2017).

    Article  Google Scholar 

  88. Ikeda, Y., Körmann, F., Tanaka, I. & Neugebauer, J. Impact of chemical fluctuations on stacking fault energies of CrCoNi and CrMnFeCoNi high entropy alloys from first principles. Entropy 20, 655 (2018).

    Article  Google Scholar 

  89. Zhao, S., Osetsky, Y., Stocks, G. M. & Zhang, Y. Local-environment dependence of stacking fault energies in concentrated solid-solution alloys. npj Comput. Mater. 5, 13 (2019).

    Article  Google Scholar 

  90. Fukushima, T. et al. Local energies and energy fluctuations—applied to the high entropy alloy CrFeCoNi. J. Phys. Soc. Jpn 86, 114704 (2017).

    Article  Google Scholar 

  91. Meshkov, E., Novoselov, I., Shapeev, A. & Yanilkin, A. Sublattice formation in CoCrFeNi high-entropy alloy. Intermetallics 112, 106542 (2019).

    Article  Google Scholar 

  92. Jian, W.-R., Wang, L., Bi, W., Xu, S. & Beyerlein, I. J. Role of local chemical fluctuations in the melting of medium entropy alloy CoCrNi. Appl. Phys. Lett. 119, 121904 (2021).

    Article  Google Scholar 

  93. Varvenne, C., Luque, A. & Curtin, W. A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 118, 164–176 (2016).

    Article  Google Scholar 

  94. Maresca, F. & Curtin, W. A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K. Acta Mater. 182, 235–249 (2020).

    Article  Google Scholar 

  95. Jian, W.-R. et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater. 199, 352–369 (2020).

    Article  Google Scholar 

  96. Yang, X. et al. Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation. Scripta Mater. 209, 114364 (2022).

    Article  Google Scholar 

  97. Schön, C. G. On short-range order strengthening and its role in high-entropy alloys. Scripta Mater. 196, 113754 (2021).

    Article  Google Scholar 

  98. Yin, S. et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat. Commun. 12, 4873 (2021).

    Article  Google Scholar 

  99. Li, X.-G., Chen, C., Zheng, H., Zuo, Y. & Ong, S. P. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. npj Comput. Mater. 6, 70 (2020).

    Article  Google Scholar 

  100. Kristoffersen, H. & Rossmeisl, J. Local order in AgAuCuPdPt high-entropy alloy surfaces. J. Phys. Chem. C 126, 6782–6790 (2022).

    Article  Google Scholar 

  101. Wynblatt, P. & Chatain, D. Modeling grain boundary and surface segregation in multicomponent high-entropy alloys. Phys. Rev. Mater. 3, 054004 (2019).

    Article  Google Scholar 

  102. Chatain, D. & Wynblatt, P. Surface segregation in multicomponent high entropy alloys: atomistic simulations versus a multilayer analytical model. Comput. Mater. Sci. 187, 110101 (2021).

    Article  Google Scholar 

  103. Ferrari, A. & Körmann, F. Surface segregation in Cr-Mn-Fe-Co-Ni high entropy alloys. Appl. Surf. Sci. 533, 147471 (2020).

    Article  Google Scholar 

  104. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).

    Article  Google Scholar 

  105. Novikov, I., Grabowski, B., Körmann, F. & Shapeev, A. Magnetic moment tensor potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Comput. Mater. 8, 13 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

A.F. and F.K. acknowledge funding from Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)/Stichting voor de Technische Wetenschappen (STW), VIDI grant no. 15707. M.A. acknowledges funding from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05-CH11231 within the Damage-Tolerance in Structural Materials (KC 13) program. F.K. acknowledges funding by the Deutsche Forschungsgemeinschaft (German Research Foundation) through project no. 429582718 and J.N. through projects nos. 405621160 and 405621217.

Author information

Authors and Affiliations

Authors

Contributions

A.F. wrote the manuscript with comments and input from F.K., M.A. and J.N. All authors contributed to discussions and commented on the manuscript.

Corresponding authors

Correspondence to Fritz Körmann or Jörg Neugebauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Maryam Ghazisaeidi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, A., Körmann, F., Asta, M. et al. Simulating short-range order in compositionally complex materials. Nat Comput Sci 3, 221–229 (2023). https://doi.org/10.1038/s43588-023-00407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00407-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing