Article | Published:

Country-level social cost of carbon

Nature Climate Changevolume 8pages895900 (2018) | Download Citation

Abstract

The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages from carbon dioxide (CO2) emissions. Although useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damage and vast differences in country-level contributions to the global SCC, as well as climate and socio-economic uncertainties, which are larger at the regional level. Here we estimate country-level contributions to the SCC using recent climate model projections, empirical climate-driven economic damage estimations and socio-economic projections. Central specifications show high global SCC values (median, US$417 per tonne of CO2 (tCO2); 66% confidence intervals, US$177–805 per tCO2) and a country-level SCC that is unequally distributed. However, the relative ranking of countries is robust to different specifications: countries that incur large fractions of the global cost consistently include India, China, Saudi Arabia and the United States.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The database of the CSCCs with uncertainty bounds under all scenarios, model specifications and discounting schemes is available as a part of the Supplementary Information and via https://country-level-scc.github.io/.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Tol, R. S. J. The social cost of carbon. Annu. Rev. Resour. Econ. 3, 419–443 (2011).

  2. 2.

    IAWG Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (US Government, 2013).

  3. 3.

    Pindyck, R. S. The Social Cost of Carbon Revisited (National Bureau of Economic Research, 2016).

  4. 4.

    Anthoff, D. & Tol, R. S. J. The uncertainty about the social cost of carbon: a decomposition analysis using fund. Climatic Change 117, 515–530 (2013).

  5. 5.

    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

  6. 6.

    Nordhaus, W. Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. J. Assoc. Environ. Resour. Econ. 1, 273–312 (2014).

  7. 7.

    Bansal, R., Kiku, D. & Ochoa, M. Price of Long-Run Temperature Shifts in Capital Markets (National Bureau of Economic Research, 2016).

  8. 8.

    National Academies of Sciences, Engineering and Medicine Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide (National Academies, Washington, 2017).

  9. 9.

    Anthoff, D., Tol, R. S. J. & Yohe, G. W. Risk aversion, time preference, and the social cost of carbon. Environ. Res. Lett. 4, 024002 (2009).

  10. 10.

    Weitzman, M. L. Tail-hedge discounting and the social cost of carbon. J. Econ. Lit. 51, 873–882 (2013).

  11. 11.

    Ackerman, F. & Stanton, E. A. Climate risks and carbon prices: revising the social cost of carbon. Economics 6, 2012–10 (2012).

  12. 12.

    Hope, C. Discount rates, equity weights and the social cost of carbon. Energy Econ. 30, 1011–1019 (2008).

  13. 13.

    Cai, Y., Judd, K. L. & Lontzek, T. S. The social cost of carbon with economic and climate risks. Preprint at http://arXiv.org/q-fin.EC/150406909 (2015).

  14. 14.

    Adler, M. et al. Priority for the worse-off and the social cost of carbon. Nat. Clim. Change 7, 443–449 (2017).

  15. 15.

    Moyer, E., Woolley, M., Glotter, M. & Weisbach, D. Climate Impacts on Economic Growth as Drivers of Uncertainty in the Social Cost of Carbon Working Paper No. 65 (Coase-Sandor Institute for Law & Economics, 2013).

  16. 16.

    Kopp, R. E., Golub, A., Keohane, N. O. & Onda, C. The influence of the specification of climate change damages on the social cost of carbon. Economics 6, 2012–13 (2012).

  17. 17.

    Nordhaus, W. Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. J. Assoc. Environ. Resour. Econ. 1, 273–312 (2014).

  18. 18.

    Cai, Y., Judd, K. L. & Lontzek, T. S. The Social Cost of Stochastic and Irreversible Climate Change (National Bureau of Economic Research, 2013).

  19. 19.

    Barrett, S. Self-enforcing international environmental agreements. Oxf. Econ. Pap. 46, 878–894 (1994).

  20. 20.

    Carraro, C. & Siniscalco, D. Strategies for the international protection of the environment. J. Public Econ. 52, 309–328 (1993).

  21. 21.

    Adams, R. M., McCarl, B. A. & Mearns, L. O. in Issues in the Impacts of Climate Variability and Change on Agriculture (ed. Mearns, L. O.) 131–148 (Springer Netherlands, Dordrecht, 2003).

  22. 22.

    Pizer, W. et al. Using and improving the social cost of carbon. Science 346, 1189–1190 (2014).

  23. 23.

    Nordhaus, W. D. Revisiting the social cost of carbon. Proc. Natl Acad. Sci. USA 114, 1518–1523 (2017).

  24. 24.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2013).

  25. 25.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

  26. 26.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

  27. 27.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  28. 28.

    Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

  29. 29.

    Ricke, K. L. & Caldeira, K. Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 9, 124002 (2014).

  30. 30.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

  31. 31.

    Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

  32. 32.

    Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).

  33. 33.

    Jones, C. I. & Klenow, P. J. Beyond GDP? Welfare across countries and time. Am. Econ. Rev. 106, 2426–2457 (2016).

  34. 34.

    Guo, J., Hepburn, C., Tol, R. S. J. & Anthoff, D. Discounting and the social cost of carbon: a closer look at uncertainty. Environ. Sci. Policy 9, 205–216 (2006).

  35. 35.

    Ramsey, F. P. A mathematical theory of saving. Econ. J. 38, 543–559 (1928).

  36. 36.

    Lemoine, D. & Kapnick, S. A top-down approach to projecting market impacts of climate change. Nat. Clim. Change 6, 51–55 (2016).

  37. 37.

    Burke, M., Davis, W. M. & Diffenbaugh, N. S. Large potential reduction in economic damages under UN mitigation targets. Nature 557, 549–553 (2018).

  38. 38.

    Gastwirth, J. L. The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 54, 306–316 (1972).

  39. 39.

    Raffinetti, E., Siletti, E. & Vernizzi, A. On the Gini coefficient normalization when attributes with negative values are considered. Stat. Methods Appl. 24, 507–521 (2015).

  40. 40.

    Oh, C. H. & Reuveny, R. Climatic natural disasters, political risk, and international trade. Glob. Environ. Change 20, 243–254 (2010).

  41. 41.

    Bohra-Mishra, P., Oppenheimer, M. & Hsiang, S. M. Nonlinear permanent migration response to climatic variations but minimal response to disasters. Proc. Natl Acad. Sci. USA 111, 9780–9785 (2014).

  42. 42.

    Thornton, J. & Covington, H. Climate change before the court. Nat. Geosci. 9, 3–5 (2016).

  43. 43.

    Rao, S. et al. A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environ. Res. Lett. 11, 124013 (2016).

  44. 44.

    Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 51, 860–872 (2013).

  45. 45.

    Lempert, R. J. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis (Rand Corporation, 2003).

  46. 46.

    Matsuura, K. & Willmott, C. Terrestrial Air Temperature and Precipitation: 1900–2006 Gridded Monthly Time Series Version 1.01 (Univ. Delaware, 2007); http://climate.geog.udel.edu/~climate/

Download references

Acknowledgements

M.T. thanks M. Burke for an early discussion of these ideas and about the climate impact functions. K.R. thanks C. McIntosh and J. Moreno-Cruz for helpful discussions during the revisions of this manuscript. M.T. received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336155 (project COBHAM). L.D received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement no. 642147 (CD-LINKS).

Author information

Affiliations

  1. School of Global Policy and Strategy, University of California San Diego, La Jolla, CA, USA

    • Katharine Ricke
  2. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA

    • Katharine Ricke
  3. RFF-CMCC European Institute on Economics and the Environment (EIEE), Milan, Italy

    • Laurent Drouet
    •  & Massimo Tavoni
  4. Carnegie Institution for Science, Stanford, CA, USA

    • Ken Caldeira
  5. Politecnico di Milano, Department of Management, Economics and Industrial Engineering, Milan, Italy

    • Massimo Tavoni

Authors

  1. Search for Katharine Ricke in:

  2. Search for Laurent Drouet in:

  3. Search for Ken Caldeira in:

  4. Search for Massimo Tavoni in:

Contributions

M.T. conceived the study. K.R. performed the climate data analysis. L.D. replicated the economic damage functions and performed the CSCC calculations and uncertainty analysis. K.R., M.T. and L.D. analysed the results. K.R. and M.T. wrote the manuscript. All authors discussed the results and provided input on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Katharine Ricke.

Supplementary Information

  1. Supplementary Information

    Supplementary Discussion, Supplementary Figures 1–13, Supplementary Tables 1–6, Supplementary References

  2. Supplementary Data 1

    CSCC Database

  3. Supplementary Data 2

    CSCC Database Readme

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0282-y