Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The synthesis, properties and potential applications of cyclic polymers

Abstract

Unlike their more common linear counterparts, cyclic polymers have a ring-like structure and a lack of chain ends. Because of their topology, cyclic polymers exhibit a unique set of properties when compared with linear or branched macromolecules. For example, cyclic homopolymers exhibit a reduced hydrodynamic volume and a slower degradation profile compared with their linear analogues. Cyclic block copolymers self-assemble into compact nanostructures, as illustrated by their reduced domain spacing when cast into thin films and their reduced micellar size in solution. Although methods for preparing well-defined cyclic polymers have only been available since 1980, the extensive utilization of the cyclic topology in nature highlights the vital role that a cyclic architecture can play in imparting valuable physical properties, such as increased chemical stability or propensity towards self-assembly. This Review describes the major developments in the synthesis of cyclic polymers and provides an overview of their fundamental physical properties. In this context, preliminary studies exploring potential applications will be critically assessed and the remaining challenges for the field delineated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetically accessible polymer architectures varying in their incorporation of end groups and junction points.
Fig. 2: Some cyclic biomacromolecules found in nature.
Fig. 3: Synthetic pathways for the generation of cyclic polymers.
Fig. 4: Examples of the unique physical properties of cyclic polymers.
Fig. 5: Examples of the unique biological properties of cyclic polymers.

Similar content being viewed by others

References

  1. El-Sagheer, A. & Brown, T. Synthesis, serum stability and cell uptake of cyclic and hairpin decoy oligonucleotides for TCF/LEF and GLI transcription factors. Int. J. Pept. Res. Ther. 14, 367–372 (2008).

    Article  CAS  Google Scholar 

  2. Saether, O. et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochem. 34, 4147–4158 (1995).

    Article  CAS  Google Scholar 

  3. Vinograd, J. & Lebowitz, J. Physical and topological properties of circular DNA. J. Gen. Physiol. 49, 103–125 (1966).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sprott, G. D. Structures of archaebacterial membrane lipids. J. Bioenerg. Biomembr. 24, 555–566 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. Ireland, D. C., Clark, R. J., Daly, N. L. & Craik, D. J. Isolation, sequencing, and structure–activity relationships of cyclotides. J. Nat. Prod. 73, 1610–1622 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An “endless” route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Boydston, A. J., Xia, Y., Kornfield, J. A., Gorodetskaya, I. A. & Grubbs, R. H. Cyclic ruthenium-alkylidene catalysts for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 130, 12775–12782 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jeong, W., Hedrick, J. L. & Waymouth, R. M. Organic spirocyclic initiators for the ring-expansion polymerization of β-lactones. J. Am. Chem. Soc. 129, 8414–8415 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Kamber, N. E., Jeong, W., Gonzalez, S., Hedrick, J. L. & Waymouth, R. M. N-heterocyclic carbenes for the organocatalytic ring-opening polymerization of ε-caprolactone. Macromolecules 42, 1634–1639 (2009).

    Article  CAS  Google Scholar 

  10. Culkin, D. A. et al. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Angew. Chem. Int. Ed. 46, 2627–2630 (2007).

    Article  CAS  Google Scholar 

  11. Oike, H. et al. Designing unusual polymer topologies by electrostatic self-assembly and covalent fixation. J. Am. Chem. Soc. 122, 9592–9599 (2000).

    Article  CAS  Google Scholar 

  12. Sun, P., Chen, J., Liu, Ja. & Zhang, K.. Self-accelerating click reaction for cyclic polymer. Macromolecules 50, 1463–1472 (2017).

  13. Li, Z. et al. Self-accelerating click reaction for preparing cyclic polymers from unconjugated vinyl monomers. Polymer 137, 54–62 (2018).

    Article  CAS  Google Scholar 

  14. Laurent, B. A. & Grayson, S. M. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J. Am. Chem. Soc. 128, 4238–4239 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Honda, S., Yamamoto, T. & Tezuka, Y. Topology-directed control on thermal stability: micelles formed from linear and cyclized amphiphilic block copolymers. J. Am. Chem. Soc. 132, 10251–10253 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. Honda, S., Yamamoto, T. & Tezuka, Y. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nat. Commun. 4, 1574 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Lorenzo, A. T., Cordova, M. E., Grayson, S. M., Müller, A. J. & Hoskins, J. N. A comparative study on the crystallization behavior of analogous linear and cyclic poly(ε-caprolactones). Macromolecules 44, 1742–1746 (2011).

    Article  CAS  Google Scholar 

  18. Zaldua, N. et al. Influence of chain topology (cyclic versus linear) on the nucleation and isothermal crystallization of poly(l-lactide) and poly(d-lactide). Macromolecules 51, 1718–1732 (2018).

    Article  CAS  Google Scholar 

  19. Zhang, B., Zhang, H., Li, Y., Hoskins, J. N. & Grayson, S. M. Exploring the effect of amphiphilic polymer architecture: synthesis, characterization, and self-assembly of both cyclic and linear poly(ethylene gylcol)-b-polycaprolactone. ACS Macro Lett. 2, 845–848 (2013).

    Article  CAS  Google Scholar 

  20. Hoskins, J. N. & Grayson, S. M. Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules 42, 6406–6413 (2009).

    Article  CAS  Google Scholar 

  21. Roovers, J. Viscoelastic properties of polybutadiene rings. Macromolecules 21, 1517–1521 (1988).

    Article  CAS  Google Scholar 

  22. Pasquino, R. et al. Viscosity of ring polymer melts. ACS Macro Lett. 2, 874–878 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Doi, Y. et al. Melt rheology of ring polystyrenes with ultrahigh purity. Macromolecules 48, 3140–3147 (2015).

    Article  CAS  Google Scholar 

  24. Jacob, F. & Wollman, E. L. Genetic and physical determinations of chromosomal segments in Escherichia coli. Sym. Soc. Exp. Biol. 12, 75–92 (1958).

    CAS  Google Scholar 

  25. Freifelder, D., Kleinschmidt, A. K. & Sinsheimer, R. L. Electron microscopy of single-stranded DNA: circularity of DNA of bacteriophage ϕX174. Science 146, 254–255 (1964).

    Article  PubMed  CAS  Google Scholar 

  26. Wasserman, S. A. & Cozzarelli, N. R. Biochemical topology: applications to DNA recombination and replication. Science 232, 951–960 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif1. J. Mol. Biol. 294, 1327–1336 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. Conibear, A. C. & Craik, D. J. The chemistry and biology of theta defensins. Angew. Chem. Int. Ed. 53, 10612–10623 (2014).

    Article  CAS  Google Scholar 

  29. Craik, D. J., Daly, N. L. & Waine, C. The cystine knot motif in toxins and implications for drug design. Toxicon 39, 43–60 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Vlieghe, P., Lisowski, V., Martinez, J. & Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today 15, 40–56 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Laimou, D. et al. Rationally designed cyclic analogues of luteinizing hormone-releasing hormone: enhanced enzymatic stability and biological properties. Eur. J. Med. Chem. 58, 237–247 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Lazarova, T. et al. Synthesis and biological evaluation of novel cyclosporin A analogues: potential soft drugs for the treatment of autoimmune diseases. J. Med. Chem. 46, 674–676 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. Eckstein, J. W. & Fung, J. A new class of cyclosporin analogues for the treatment of asthma. Expert Opin. Invest. Drugs 12, 647–653 (2003).

    Article  CAS  Google Scholar 

  34. Tapeinou, A., Matsoukas, M.-T., Simal, C. & Tselios, T. Review cyclic peptides on a merry-go-round; towards drug design. Pept. Sci. 104, 453–461 (2015).

    Article  CAS  Google Scholar 

  35. Cheneval, O. et al. Fmoc-based synthesis of disulfide-rich cyclic peptides. J. Org. Chem. 79, 5538–5544 (2014).

    Article  PubMed  CAS  Google Scholar 

  36. Colgrave, M. L. & Craik, D. J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43, 5965–5975 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. Clark, R. J. et al. Design, synthesis, and characterization of cyclic analogues of the iron regulatory peptide hormone hepcidin. Biopolymers 100, 519–526 (2013).

    Article  PubMed  CAS  Google Scholar 

  38. Sprott, G. D., Meloche, M. & Richards, J. C. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J. Bacteriol. 173, 3907–3910 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kricheldorf, H. R. Macrocycles. 21. Role of ring–ring equilibria in thermodynamically controlled polycondensations. Macromolecules 36, 2302–2308 (2003).

    Article  CAS  Google Scholar 

  40. Jia, Z. & Monteiro, M. J. Cyclic polymers: methods and strategies. J. Polym. Sci. A 50, 2085–2097 (2012).

    Article  CAS  Google Scholar 

  41. Geiser, D. & Höcker, H. Synthesis and investigation of macrocyclic polystyrene. Macromolecules 13, 653–656 (1980).

    Article  CAS  Google Scholar 

  42. Hild, G., Kohler, A. & Rempp, P. Synthesis of ring-shaped macromolecules. Eur. Polym. J. 16, 525–527 (1980).

    Article  CAS  Google Scholar 

  43. Honda, S., Adachi, K., Yamamoto, T. & Tezuka, Y. A twisting ring polymer: synthesis and thermally induced chiroptical responses of a cyclic poly(tetrahydrofuran) having axially chiral units. Macromolecules 50, 5323–5331 (2017).

    Article  CAS  Google Scholar 

  44. Sugai, N. et al. Effective click construction of bridged- and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-telechelics). J. Am. Chem. Soc. 132, 14790–14802 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. Tezuka, Y. & Fujiyama, K. Construction of polymeric δ-graph: a doubly fused tricyclic topology. J. Am. Chem. Soc. 127, 6266–6270 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki, T., Yamamoto, T. & Tezuka, Y. Constructing a macromolecular K3,3 graph through electrostatic self-assembly and covalent fixation with a dendritic polymer precursor. J. Am. Chem. Soc. 136, 10148–10155 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Liu, C., Fei, Y.-y, Zhang, H.-l, Pan, C.-y & Hong, C.-y Effective construction of hyperbranched multicyclic polymer by combination of ATRP, UV-induced cyclization, and self-accelerating click reaction. Macromolecules 52, 176–184 (2019).

    Article  CAS  Google Scholar 

  48. Schappacher, M. & Deffieux, A. Synthesis of macrocyclic poly(2-chloroethyl vinyl ether)s. Makromol. Chem. Rapid Commun. 12, 447–453 (1991).

    Article  CAS  Google Scholar 

  49. Schappacher, M. & Deffieux, A. α-Acetal-ω-bis(hydroxymethyl) heterodifunctional polystyrene: synthesis, characterization, and investigation of intramolecular end-to-end ring closure. Macromolecules 34, 5827–5832 (2001).

    Article  CAS  Google Scholar 

  50. Hossain, M. D., Jia, Z. & Monteiro, M. J. Complex polymer topologies built from tailored multifunctional cyclic polymers. Macromolecules 47, 4955–4970 (2014).

    Article  CAS  Google Scholar 

  51. Jia, Z., Lonsdale, D. E., Kulis, J. & Monteiro, M. J. Construction of a 3-miktoarm star from cyclic polymers. ACS Macro Lett. 1, 780–783 (2012).

    Article  CAS  Google Scholar 

  52. Sun, P., Tang, Q., Wang, Z., Zhao, Y. & Zhang, K. Cyclic polymers based on UV-induced strain promoted azide–alkyne cycloaddition reaction. Polym. Chem. 6, 4096–4101 (2015).

    Article  CAS  Google Scholar 

  53. Glassner, M., Blinco, J. P. & Barner-Kowollik, C. Diels–Alder reactions as an efficient route to high purity cyclic polymers. Macromol. Rapid Commun. 32, 724–728 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Josse, T. et al. Ambient temperature catalyst-free light-induced preparation of macrocyclic aliphatic polyesters. Chem. Commun. 50, 2024–2026 (2014).

    Article  CAS  Google Scholar 

  55. Tang, Q., Wu, Y., Sun, P., Chen, Y. & Zhang, K. Powerful ring-closure method for preparing varied cyclic polymers. Macromolecules 47, 3775–3781 (2014).

    Article  CAS  Google Scholar 

  56. Tezuka, Y. & Komiya, R. Metathesis polymer cyclization with telechelic poly(THF) having allyl groups. Macromolecules 35, 8667–8669 (2002).

    Article  CAS  Google Scholar 

  57. Kricheldorf, H. R. & Lee, S.-R. Polylactones. 35. Macrocyclic and stereoselective polymerization of β-d, l-butyrolactone with cyclic dibutyltin initiators. Macromolecules 28, 6718–6725 (1995).

    Article  CAS  Google Scholar 

  58. Kricheldorf, H. R. & Eggerstedt, S. Macrocycles 2. Living macrocyclic polymerization of ε-caprolactone with 2,2-dibutyl-2-stanna-1,3-dioxepane as initiator. Macromol. Chem. Phys. 199, 283–290 (1998).

    CAS  Google Scholar 

  59. Kricheldorf, H. R., Weidner, S. M. & Scheliga, F. Cyclic poly(l-lactide)s via ring-expansion polymerizations catalysed by 2,2-dibutyl-2-stanna-1,3-dithiolane. Polym. Chem. 8, 1589–1596 (2017).

    Article  CAS  Google Scholar 

  60. Niu, W. et al. Polypropylene: now available without chain ends. Chem 5, 237–244 (2019).

    Article  CAS  Google Scholar 

  61. Guo, L. & Zhang, D. Cyclic poly(α-peptoid)s and their block copolymers from N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-carboxylanhydrides. J. Am. Chem. Soc. 131, 18072–18074 (2009).

    Article  PubMed  CAS  Google Scholar 

  62. Zhang, Y. et al. Straightforward access to linear and cyclic polypeptides. Commun. Chem. 1, 40 (2018).

    Article  CAS  Google Scholar 

  63. Cortez, M. A. et al. The synthesis of cyclic poly(ethylene imine) and exact linear analogues: an evaluation of gene delivery comparing polymer architectures. J. Am. Chem. Soc. 137, 6541–6549 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. Xu, J., Ye, J. & Liu, S. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40, 9103–9110 (2007).

    Article  CAS  Google Scholar 

  65. Xie, M. et al. Cyclic poly(ε-caprolactone) synthesized by combination of ring-opening polymerization with ring-closing metathesis, ring closing enyne metathesis, or “click” reaction. J. Polym. Sci. A 47, 3022–3033 (2009).

    Article  CAS  Google Scholar 

  66. Misaka, H. et al. Synthesis of well-defined macrocyclic poly(δ-valerolactone) by “click cyclization”. Macromolecules 42, 5091–5096 (2009).

    Article  CAS  Google Scholar 

  67. Goldmann, A. S. et al. Access to cyclic polystyrenes via a combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymer 49, 2274–2281 (2008).

    Article  CAS  Google Scholar 

  68. Qiu, X.-P., Tanaka, F. & Winnik, F. M. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution. Macromolecules 40, 7069–7071 (2007).

    Article  CAS  Google Scholar 

  69. Kricheldorf, H. R. Cyclic polymers: synthetic strategies and physical properties. J. Polym. Sci. A 48, 251–284 (2010).

    Article  CAS  Google Scholar 

  70. Alberty, K. A., Hogen-Esch, T. E. & Carlotti, S. Synthesis and characterization of macrocyclic vinyl-aromatic polymers. Macromol. Chem. Phys. 206, 1035–1042 (2005).

    Article  CAS  Google Scholar 

  71. Hadziioannou, G. et al. Thermodynamic and hydrodynamic properties of dilute solutions of cyclic and linear polystyrenes. Macromolecules 20, 493–497 (1987).

    Article  CAS  Google Scholar 

  72. Dodgson, K., Sympson, D. & Semlyen, J. A. Studies of cyclic and linear poly(dimethyl siloxanes): 2. Preparative gel permeation chromatography. Polymer 19, 1285–1289 (1978).

    Article  CAS  Google Scholar 

  73. Wang, J. et al. Comparing crystallization rates between linear and cyclic poly(ε-caprolactones) via fast-scan chip-calorimeter measurements. Polymer 63, 34–40 (2015).

    Article  CAS  Google Scholar 

  74. Shin, E. J. et al. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules 44, 2773–2779 (2011).

    Article  CAS  Google Scholar 

  75. Xu, X. et al. The first example of main-chain cyclic azobenzene polymers. Macromol. Rapid Commun. 31, 1791–1797 (2010).

    Article  PubMed  CAS  Google Scholar 

  76. Kammiyada, H., Ouchi, M. & Sawamoto, M. A study on physical properties of cyclic poly(vinyl ether)s synthesized via ring-expansion cationic polymerization. Macromolecules 50, 841–848 (2017).

    Article  CAS  Google Scholar 

  77. Zhang, L. & Torkelson, J. M. Influence of initiator fragments as chain ends on the T g-confinement effect and dewetting of thin films of ultralow molecular weight polymer. Polymer 65, 105–114 (2015).

    Article  CAS  Google Scholar 

  78. Fakhraai, Z. & Forrest, J. A. Probing slow dynamics in supported thin polymer films. Phys. Rev. Lett. 95, 025701 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. Tsui, O. K. C., Russell, T. P. & Hawker, C. J. Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34, 5535–5539 (2001).

    Article  CAS  Google Scholar 

  80. Ellison, C. J., Mundra, M. K. & Torkelson, J. M. Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition–nanoconfinement effect and the cooperativity length scale. Macromolecules 38, 1767–1778 (2005).

    Article  CAS  Google Scholar 

  81. Park, C. H. et al. Thickness and composition dependence of the glass transition temperature in thin random copolymer films. Polymer 45, 4507–4513 (2004).

    Article  CAS  Google Scholar 

  82. Zhang, L., Elupula, R., Grayson, S. M. & Torkelson, J. M. Major impact of cyclic chain topology on the T g-confinement effect of supported thin films of polystyrene. Macromolecules 49, 257–268 (2016).

    Article  CAS  Google Scholar 

  83. Zhang, L., Elupula, R., Grayson, S. M. & Torkelson, J. M. Suppression of the fragility-confinement effect via low molecular weight cyclic or ring polymer topology. Macromolecules 50, 1147–1154 (2017).

    Article  CAS  Google Scholar 

  84. Kapnistos, M. et al. Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 7, 997–1002 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Halverson, J. D., Grest, G. S., Grosberg, A. Y. & Kremer, K. Rheology of ring polymer melts: from linear contaminants to ring-linear blends. Phys. Rev. Lett. 108, 038301 (2012).

    Article  PubMed  CAS  Google Scholar 

  86. Kirst, K. U., Kremer, F., Pakula, T. & Hollingshurst, J. Molecular dynamics of cyclic and linear poly(dimethylsiloxanes). Colloid Polym. Sci. 272, 1420–1429 (1994).

    Article  CAS  Google Scholar 

  87. Gambino, T., Martínez de Ilarduya, A., Alegría, A. & Barroso-Bujans, F. Dielectric relaxations in poly(glycidyl phenyl ether): effects of microstructure and cyclic topology. Macromolecules 49, 1060–1069 (2016).

    Article  CAS  Google Scholar 

  88. Ochs, J., Veloso, A., Martínez-Tong, D. E., Alegria, A. & Barroso-Bujans, F. An insight into the anionic ring-opening polymerization with tetrabutylammonium azide for the generation of pure cyclic poly(glycidyl phenyl ether). Macromolecules 51, 2447–2455 (2018).

    Article  CAS  Google Scholar 

  89. Kawaguchi, D. Direct observation and mutual diffusion of cyclic polymers. Polym. J. 45, 783–789 (2013).

    Article  CAS  Google Scholar 

  90. Kelly, G. M., Haque, F. M., Grayson, S. M. & Albert, J. N. L. Suppression of melt-induced dewetting in cyclic poly(ε-caprolactone) thin films. Macromolecules 50, 9852–9856 (2017).

    Article  CAS  Google Scholar 

  91. Marko, J. F. Microphase separation of block copolymer rings. Macromolecules 26, 1442–1444 (1993).

    Article  CAS  Google Scholar 

  92. Lecommandoux, S. et al. Microphase separation of linear and cyclic block copolymers poly(styrene-b-isoprene): SAXS experiments. Macromolecules 37, 1843–1848 (2004).

    Article  CAS  Google Scholar 

  93. Poelma, J. E. et al. Cyclic block copolymers for controlling feature sizes in block copolymer lithography. ACS Nano 6, 10845–10854 (2012).

    Article  PubMed  CAS  Google Scholar 

  94. Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4176 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 100, 1223–1252 (2000).

    Article  PubMed  CAS  Google Scholar 

  96. Gonsales, S. A. et al. Highly tactic cyclic polynorbornene: stereoselective ring expansion metathesis polymerization of norbornene catalyzed by a new tethered tungsten-alkylidene catalyst. J. Am. Chem. Soc. 138, 4996–4999 (2016).

    Article  PubMed  CAS  Google Scholar 

  97. Roland, C. D., Li, H., Abboud, K. A., Wagener, K. B. & Veige, A. S. Cyclic polymers from alkynes. Nat. Chem. 8, 791–796 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Torchilin, V. P. & Weissig, V. in Controlled Drug Delivery (eds Park, K. & Mrsny, R. J.) 297–313 (ACS Symposium Series Vol. 752, American Chemical Society, 2000).

  99. Torchilin, V. P., Lukyanov, A. N., Gao, Z. & Papahadjopoulos-Sternberg, B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl Acad. Sci. USA 100, 6039–6044 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Movassaghian, S., Merkel, O. M. & Torchilin, V. P. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 691–707 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. Tyrrell, Z. L., Shen, Y. & Radosz, M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 35, 1128–1143 (2010).

    Article  CAS  Google Scholar 

  102. Torchilin, V. P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61, 2549–2559 (2004).

    Article  PubMed  CAS  Google Scholar 

  103. Ree, B. J., Satoh, T. & Yamamoto, T. Micelle structure details and stabilities of cyclic block copolymer amphiphile and its linear analogues. Polymers 11, 163 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  104. Iatrou, H., Hadjichristidis, N., Meier, G., Frielinghaus, H. & Monkenbusch, M. Synthesis and characterization of model cyclic block copolymers of styrene and butadiene. Comparison of the aggregation phenomena in selective solvents with linear diblock and triblock analogues. Macromolecules 35, 5426–5437 (2002).

    Article  CAS  Google Scholar 

  105. Maeda, H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 164, 138–144 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013).

    Article  PubMed  CAS  Google Scholar 

  107. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  108. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    PubMed  CAS  Google Scholar 

  109. Gillies, E. R., Dy, E., Fréchet, J. M. J. & Szoka, F. C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm. 2, 129–138 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. Gillies, E. R. & Fréchet, J. M. J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005).

    Article  PubMed  CAS  Google Scholar 

  111. Chen, B., Jerger, K., Frechet, J. M. & Szoka, F. C. Jr The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release 140, 203–209 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fox, M. E., Szoka, F. C. & Fréchet, J. M. J. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 42, 1141–1151 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nasongkla, N. et al. Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J. Am. Chem. Soc. 131, 3842–3843 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Seib, F. P., Jones, A. T. & Duncan, R. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J. Control. Release 117, 291–300 (2007).

    Article  PubMed  CAS  Google Scholar 

  115. Wei, H., Chu, D. S. H., Zhao, J., Pahang, J. A. & Pun, S. H. Synthesis and evaluation of cyclic cationic polymers for nucleic acid delivery. ACS Macro Lett. 2, 1047–1050 (2013).

    Article  CAS  Google Scholar 

  116. Cheng, Y. et al. Nano-sized sunflower polycations as effective gene transfer vehicles. Small 12, 2750–2758 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Klibanov, A. M. & Thomas, M. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA 99, 14640–14645

  118. Abdallah, B. et al. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. 7, 1947–1954 (1996).

    Article  PubMed  CAS  Google Scholar 

  119. Johnson, R. N. et al. HPMA-oligolysine copolymers for gene delivery: optimization of peptide length and polymer molecular weight. J. Control. Release 155, 303–311 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Jakubowski, W., Kirci-Denizli, B., Gil, R. R. & Matyjaszewski, K. Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromol. Chem. Phys. 209, 32–39 (2008).

    Article  CAS  Google Scholar 

  121. Bielawski, C. W., Benitez, D. & Grubbs, R. H. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants. J. Am. Chem. Soc. 125, 8424–8425 (2003).

    Article  PubMed  CAS  Google Scholar 

  122. Asenjo-Sanz, I., Veloso, A., Miranda, J. I., Pomposo, J. A. & Barroso-Bujans, F. Zwitterionic polymerization of glycidyl monomers to cyclic polyethers with B(C6F5)3. Polym. Chem. 5, 6905–6908 (2014).

    Article  CAS  Google Scholar 

  123. Takano, A. et al. HPLC characterization of cyclization reaction product obtained by end-to-end ring closure reaction of a telechelic polystyrene. Macromolecules 40, 679–681 (2007).

    Article  CAS  Google Scholar 

  124. Elupula, R., Oh, J., Haque, F. M., Chang, T. & Grayson, S. M. Determining the origins of impurities during azide–alkyne click cyclization of polystyrene. Macromolecules 49, 4369–4372 (2016).

    Article  CAS  Google Scholar 

  125. Chang, T. Polymer characterization by interaction chromatography. J. Polym. Sci. B 43, 1591–1607 (2005).

    Article  CAS  Google Scholar 

  126. Lee, H. C. & Chang, T. Polymer molecular weight characterization by temperature gradient high performance liquid chromatography. Polymer 37, 5747–5749 (1996).

    Article  CAS  Google Scholar 

  127. Berek, D. Coupled liquid chromatographic techniques for the separation of complex polymers. Prog. Polym. Sci. 25, 873–908 (2000).

    Article  CAS  Google Scholar 

  128. Li, S. W. et al. Detecting structural polydispersity in branched polybutadienes. Macromolecules 44, 208–214 (2011).

    Article  CAS  Google Scholar 

  129. Josse, T. et al. A tandem mass spectrometry-based method to assess the architectural purity of synthetic polymers: a case of a cyclic polylactide obtained by click chemistry. Polym. Chem. 6, 64–69 (2015).

    Article  CAS  Google Scholar 

  130. Li, Y., Hoskins, J. N., Sreerama, S. G. & Grayson, S. M. MALDI-TOF mass spectral characterization of polymers containing an azide group: evidence of metastable ions. Macromolecules 43, 6225–6228 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Yol, A. et al. Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2). J. Am. Soc. Mass Spectrom. 24, 74–82 (2013).

    Article  PubMed  CAS  Google Scholar 

  132. Hoskins, J. N., Trimpin, S. & Grayson, S. M. Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules 44, 6915–6918 (2011).

    Article  CAS  Google Scholar 

  133. Li, X., Guo, L., Casiano-Maldonado, M., Zhang, D. & Wesdemiotis, C. Top-down multidimensional mass spectrometry methods for synthetic polymer analysis. Macromolecules 44, 4555–4564 (2011).

    Article  CAS  Google Scholar 

  134. Urbani, C. N., Bell, C. A., Lonsdale, D. E., Whittaker, M. R. & Monteiro, M. J. Reactive alkyne and azide solid supports to increase purity of novel polymeric stars and dendrimers via the “click” reaction. Macromolecules 40, 7056–7059 (2007).

    Article  CAS  Google Scholar 

  135. Zhang, B., Zhang, H., Elupula, R., Alb, A. M. & Grayson, S. M. Efficient synthesis of high purity homo-arm and mikto-arm poly(ethylene glycol) stars using epoxide and azide–alkyne coupling chemistry. Macromol. Rapid Commun. 35, 146–151 (2014).

    Article  PubMed  CAS  Google Scholar 

  136. Haque, F. M., Alegria, A., Grayson, S. M. & Barroso-Bujans, F. Detection, quantification, and “click-scavenging” of impurities in cyclic poly(glycidyl phenyl ether) obtained by zwitterionic ring-expansion polymerization with B(C6F5)3. Macromolecules 50, 1870–1881 (2017).

    Article  CAS  Google Scholar 

  137. Lonsdale, D. E., Bell, C. A. & Monteiro, M. J. Strategy for rapid and high-purity monocyclic polymers by CuAAC “click” reactions. Macromolecules 43, 3331–3339 (2010).

    Article  CAS  Google Scholar 

  138. Sun, P., Liu, Ja., Zhang, Z. & Zhang, K.. Scalable preparation of cyclic polymers by the ring-closure method assisted by the continuous-flow technique. Polym. Chem. 7, 2239–2244 (2016).

  139. Kundukad, B., Yan, J. & Doyle, P. S. Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter 10, 9721–9728 (2014).

    Article  PubMed  CAS  Google Scholar 

  140. Lan, T. & Torkelson, J. M. Fragility-confinement effects: apparent universality as a function of scaled thickness in films of freely deposited, linear polymer and its absence in densely grafted brushes. Macromolecules 49, 1331–1343 (2016).

    Article  CAS  Google Scholar 

  141. Zhang, L., Marsiglio, J. A., Lan, T. & Torkelson, J. M. Dramatic tunability of the glass transition temperature and fragility of low molecular weight polystyrene by initiator fragments located at chain ends. Macromolecules 49, 2387–2398 (2016).

    Article  CAS  Google Scholar 

  142. Santangelo, P. G. & Roland, C. M. Molecular weight dependence of fragility in polystyrene. Macromolecules 31, 4581–4585 (1998).

    Article  CAS  Google Scholar 

  143. Deffieux, A., Schappacher, M. & Rique-Lurbet, L. New routes to macrocyclic polymers of controlled dimensions. Polymer 35, 4562–4568 (1994).

    Article  CAS  Google Scholar 

  144. Santangelo, P. G., Roland, C. M., Chang, T., Cho, D. & Roovers, J. Dynamics near the glass temperature of low molecular weight cyclic polystyrene. Macromolecules 34, 9002–9005 (2001).

    Article  CAS  Google Scholar 

  145. Rique-Lurbet, L., Schappacher, M. & Deffieux, A. A new strategy for the synthesis of cyclic polystyrenes: principle and application. Macromolecules 27, 6318–6324 (1994).

    Article  CAS  Google Scholar 

  146. Gao, L., Oh, J., Tu, Y., Chang, T. & Li, C. Y. Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer 170, 198–203 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.M.H. thanks support from the NSF (IAA-1430280) through the Smart MAterials Design, Analysis, and Processing consortium (SMATDAP) and the Joseph H. Boyer professorship. We also thank O. Coulembier for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.M.H. and S.M.G. made equal contributions to the manuscript.

Corresponding author

Correspondence to Scott M. Grayson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, F.M., Grayson, S.M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 12, 433–444 (2020). https://doi.org/10.1038/s41557-020-0440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0440-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing