Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Innate immune sensing of lysosomal dysfunction drives multiple lysosomal storage disorders

Abstract

Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS–STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann–Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STING is constitutively active in neurons of LSD mice.
Fig. 2: Sting1 ablation alleviates motor dysfunction in LSD mice.
Fig. 3: STING signalling drives Sandhoff disease through neuronal death.
Fig. 4: Various lysosome storages mutually induce STING signalling.
Fig. 5: Cytosolic dsDNA accumulation induces cGAS–STING signalling.
Fig. 6: cGAS translocates and is indispensable for LSD pathogenesis.
Fig. 7: Digestion of cytosolic dsDNA in neurons by a DNase cures LSDs.

Similar content being viewed by others

Data availability

There are no restrictions on data availability in this article, and all data supporting the findings of this study are provided. All original immunoblots and statistical data are included as source data. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

    Article  PubMed  Google Scholar 

  2. Boustany, R. M. Lysosomal storage diseases—the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Serrano-Puebla, A. & Boya, P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann. N. Y. Acad. Sci. 1371, 30–44 (2016).

    Article  PubMed  ADS  Google Scholar 

  4. Cantor, R. M., Roy, C., Lim, J. S. T. & Kaback, M. M. Sandhoff disease heterozygote detection—a component of population screening for Tay–Sachs disease carriers. II. Sandhoff disease gene-frequencies in American Jewish and non-Jewish populations. Am. J. Hum. Genet. 41, 16–26 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Greer, W. L. et al. The Nova Scotia (type D) form of Niemann–Pick disease is caused by a G3097–>T transversion in NPC1. Am. J. Hum. Genet. 63, 52–54 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prada, C. E. & Grabowski, G. A. Neuronopathic lysosomal storage diseases: clinical and pathologic findings. Dev. Disabil. Res. Rev. 17, 226–246 (2013).

    Article  PubMed  Google Scholar 

  7. Bley, A. E. et al. Natural history of infantile G gangliosidosis. Pediatrics 128, E1233–E1241 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delnooz, C. C. S. et al. New cases of adult-onset Sandhoff disease with a cerebellar or lower motor neuron phenotype. J. Neurol. Neurosurg. Psychiatry 81, 968–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Grosso, S. et al. GM2 gangliosidosis variant B1—neuroradiological findings. J. Neurol. 250, 17–21 (2003).

    Article  PubMed  Google Scholar 

  10. Jeyakumar, M. et al. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc. Natl Acad. Sci. USA 96, 6388–6393 (1999).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Kitakaze, K. et al. Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model. J. Clin. Invest. 126, 1691–1703 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leal, A. F. et al. Lysosomal storage diseases: current therapies and future alternatives. J. Mol. Med. 98, 931–946 (2020).

    Article  PubMed  Google Scholar 

  13. Wu, Y. Q. et al. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol. Cancer https://doi.org/10.1186/s12943-020-01157-x (2020).

  14. Liu, S. et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis. 9, 476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Repnik, U., Hafner Cesen, M. & Turk, B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 19, 49–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, F., Gomez-Sintes, R. & Boya, P. Lysosomal membrane permeabilization and cell death. Traffic 19, 918–931 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka, T. et al. LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization. Autophagy https://doi.org/10.1080/15548627.2021.1995150 (2021).

  20. Sarkar, C. et al. PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma. Autophagy 16, 466–485 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Wei, H. et al. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum. Mol. Genet 17, 469–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horowitz, M., Braunstein, H., Zimran, A., Revel-Vilk, S. & Goker-Alpan, O. Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2022.114402 (2022).

  24. Platt, N. et al. Immune dysfunction in Niemann–Pick disease type C. J. Neurochem. 136, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Vitner, E. B., Platt, F. M. & Futerman, A. H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patani, R., Hardingham, G. E. & Liddelow, S. A. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat. Rev. Neurol. 19, 395–409 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Zhang, D. et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24, 766–782 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  PubMed  Google Scholar 

  35. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Fitzgerald, K. A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Chan, Y. K. & Gack, M. U. RIG-I-like receptor regulation in virus infection and immunity. Curr. Opin. Virol. 12, 7–14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, S. et al. TBK1-mediated DRP1 targeting confers nucleic acid sensing to reprogram mitochondrial dynamics and physiology. Mol. Cell https://doi.org/10.1016/j.molcel.2020.10.018 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crampton, S. P. & Bolland, S. Spontaneous activation of RNA-sensing pathways in autoimmune disease. Curr. Opin. Immunol. 25, 712–719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra252 (2015).

    Article  Google Scholar 

  46. Ng, K. W., Marshall, E. A., Bell, J. C. & Lam, W. L. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 39, 44–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McCauley, M. E. et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 585, 96–101 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Hou, Y. et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS–STING. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.2011226118 (2021).

  52. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Paul, B. D., Snyder, S. H. & Bohr, V. A. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci. 44, 83–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, S. et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol. 21, 1027–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Kaya, E. et al. Beneficial effects of acetyl-DL-leucine (ADLL) in a mouse model of Sandhoff Disease. J. Clin. Med. https://doi.org/10.3390/jcm9041050 (2020).

  59. Zhang, K. et al. UBQLN2–HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron 109, 1949–1962 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Phaneuf, D. et al. Dramatically different phenotypes in mouse models of human Tay–Sachs and Sandhoff diseases. Hum. Mol. Genet. 5, 1–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Cho, S. M., Vardi, A., Platt, N. & Futerman, A. H. Absence of infiltrating peripheral myeloid cells in the brains of mouse models of lysosomal storage disorders. J. Neurochem. 148, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Reinert, L. S. et al. Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS. Nat. Commun. https://doi.org/10.1038/ncomms13348 (2016).

  63. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. & Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707–17712 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Liang, X. Y. et al. Inhibiting systemic autophagy during Interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res. 72, 2791–2801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marques, A. R. A. et al. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 16, 811–825 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Lloyd-Evans, E. et al. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14, 1247–1255 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat. Med. 20, 204–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Lenders, M. & Brand, E. Fabry disease: the current treatment landscape. Drugs 81, 635–645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hofmann, L. et al. Characterization of small fiber pathology in a mouse model of Fabry disease. eLife https://doi.org/10.7554/eLife.39300 (2018).

  70. Tan, A. S. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, H. et al. A nuclear export signal is required for cGAS to sense cytosolic DNA. Cell Rep. 34, https://doi.org/10.1016/j.celrep.2020.108586 (2021).

  72. Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596, 570–575 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Elrick, M. J. et al. Conditional Niemann–Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum. Mol. Genet. 19, 837–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Sharma, M., Rajendrarao, S., Shahani, N., Ramirez-Jarquin, U. N. & Subramaniam, S. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proc. Natl Acad. Sci. USA 117, 15989–15999 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  75. Liu, Y. et al. Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment. Proc. Natl Acad. Sci. USA 94, 8138–8143 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Bangari, D. S. et al. α-Galactosidase A knockout mice: progressive organ pathology resembles the type 2 later-onset phenotype of Fabry disease. Am. J. Pathol. 185, 651–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Meng, Y., Heybrock, S., Neculai, D. & Saftig, P. Cholesterol handling in lysosomes and beyond. Trends Cell Biol. 30, 452–466 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Cordova, A. F., Ritchie, C., Böhnert, V. & Li, L. Y. Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. ACS Cent. Sci. 7, 1073–1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zevini, A., Olagnier, D. & Hiscottt, J. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol. 38, 194–205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, Y. L. et al. RIG-I-mediated STING upregulation restricts herpes simplex virus 1 infection. J. Virol. 90, 9406–9419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, X. L. et al. RIG-I and IL-6 are negative-feedback regulators of STING induced by double-stranded DNA. PLoS ONE https://doi.org/10.1371/journal.pone.0182961 (2017).

  84. Huizing, M., Helip-Wooley, A., Westbroek, W., Gunay-Aygun, M. & Gahl, W. A. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genom. Hum. Genet. 9, 359–386 (2008).

    Article  CAS  Google Scholar 

  85. Martina, J. A., Raben, N. & Puertollano, R. SnapShot: lysosomal storage diseases. Cell 180, 602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonam, S. R., Wang, F. J. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Del Grosso, A., Parlanti, G., Mezzena, R. & Cecchini, M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2022.114464 (2022).

  88. Patterson, M. C., Vecchio, D., Prady, H., Abel, L. & Wraith, J. E. Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol. 6, 765–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Parenti, G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 1, 268–279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Germain, D. P. et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 375, 545–555 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, Q., Chen, C., Xia, B. & Xu, P. Chemical regulation of the cGAS-STING pathway. Curr. Opin. Chem. Biol. 69, 102170 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Q. et al. Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat. Cell Biol. 19, 362–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meng, F. et al. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev. 30, 1086–1100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hylden, J. L. K. & Wilcox, G. L. Intrathecal morphine in mice—a new technique. Eur. J. Pharmacol. 67, 313–316 (1980).

    Article  CAS  PubMed  Google Scholar 

  99. Cui, Q. Q. et al. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 186, 803–820 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, J. D. et al. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Sci. Adv. https://doi.org/10.1126/sciadv.1500615 (2015).

Download references

Acknowledgements

This research was sponsored by the NSFC Projects (31830052, 32321002 and 31725017 to P.X., and 82230038 to C.S.) and the National Key Research and Development Program of China (2021YFA1301401 to P.X.). We thank the staff at the Life Sciences Institute core facilities of Zhejiang University for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.W. and C.C. conducted most of the experiments, C.M., S.L., C.X., W.F., F.Z., Y.X. and S.C. contributed to several experiments, and Q.Z., X.B., A.L., D.N., B.X., C.Y., J.Z., T.L., X.-H.F., X.L. and C.S. helped with data analyses and discussions. P.X. and A.W. conceived the study and designed the experiments. P.X. and A.W. wrote the manuscript.

Corresponding authors

Correspondence to Xinran Li, Chengyong Shen or Pinglong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 STING is constitutively active in neurons of LSD mice.

(a) Quantifying GM2-positive cells in WT and Hexb-/- mice brain regions. Purkinje cell layer, n = 16 slices pooled from 4 WT mice, and n = 14 slices pooled from 4 Hexb-/- mice. Cerebellar deep nuclei, n = 7 slices pooled from 4 mice in each group. Brainstem, n = 16 slices pooled from 4 mice in each group. (b, c) Genotyping of mice with genetic deletion of Hexb and Sting1, which were both generated by CRISPR strategy. (d) Quantifying relative STING signal in WT and Hexb-/- mice neurons. n = 80 Purkinje cells pooled from 4 mice in each group (left); n = 4 slices captured from cerebellar deep nuclei of 4 mice per group (middle); n = 16 slices captured from brainstem of 4 mice per group (right). (e) Quantification of pSTAT1 and RIG-I protein levels showed an increased IFN-I signalling in the cerebellum of Hexb-/- mice at 12 weeks old. n = 3 mice per group. (f) Immunoblottings of phosphorylated proteins revealed that STING signalling was activated in the primary neurons of Hexb-/- mice. (g) Sequencing verified Hexb knockout clones generated by CRISPR. (h) Immunoblotting revealed that RIG-I as an ISG was highly induced in Hexb KO cells and increased by DMXAA treatment in WT and Hexb KO N2a cell lines. (i) qRT-PCR indicated that siRNA-mediated depletion of RIG-I in HEXB KO N2a cells failed to prevent ISG expression. n = 3 independent samples. (j) Quantification of pSTAT1 and RIG-I protein levels showed AAV-SNX8 infection reduced IFN-I signalling in Hexb-/- mouse brains at 3 months old. n = 3 mice per group. Graphs in a–j represent mean ± SEM, and P values were calculated by one-way ANOVA with Bonferroni correction. NS, not significant. Results in f and h represent three independent experiments.

Source data

Extended Data Fig. 2 Sting1 ablation alleviates motor dysfunction in LSD mice.

Sex-separate statistics of motor function behaviours (ad) showed that Hexb-/- female mice were more stable in the phenotype of Sandhoff disease by STING knockout. Open field test (a), n = 6 male mice per group, 3 female mice per group. Rotarod (b) and hindlimb clasping (d), n = 5 male mice in Hexb-/- group and n = 7 male mice in other groups; n = 4 female mice in WT group, n = 5 female mice in Hexb-/- group and n = 6 female mice in Hexb-/-; Sting1-/- group. Grip strength (c), n = 4 male mice in Hexb-/- group and n = 5 male mice in other groups; n = 4 female mice in the WT group and n = 5 female mice in other groups. Error bars in a-d represent mean ± SEM, and P values were calculated by one-way ANOVA with Bonferroni correction.

Source data

Extended Data Fig. 3 STING signalling drives Sandhoff disease via neuronal death.

(a, b) Immunofluorescence imaging detected STING aggregation in primary neurons upon 2-hour treatment of STING agonist DMXAA (a) and their quantification (b). Scale bars, 50 μm (left), 10 μm (right). n = 20 cells per group. (c) Immunoblotting revealed that cGAS-STING signalling was activated in primary mixed glial cells upon HSV-I infection. (d, e) Both immunoblotting (d) and qRT-PCR (e) showed that cGAS-STING signalling was activated in primary astrocytes upon DMXAA treatment (n = 3 independent samples). (f, g) TUNEL staining indicated neuronal death (FITC-positive) upon DMXAA treatment for 12-hour and 24-hour (f) and their quantification (g) Scale bars, 50 μm. n = 8 images per group. (h, i) Levels of c-PARP protein showed that prolonged DMXAA treatment was more likely to induce death of primary neurons (h) than glial cells (i). (j) A schematic model of the generation of transgenic mice carrying caSTING in excitatory neurons was shown. (k) Conditional induction of caSTING (STING R281Q) expression in excitatory neurons profoundly activated STING signalling as indicated by IRF3 phosphorylation and accompanied by neuronal loss. (l, m) Nissl staining of mice brains revealed that expression of caSTING in cre-positive mice resulted in neuronal death in the CA1 regions of the hippocampus (l), and their quantification of the neuron density was shown (m). Scale bars, 20 μm. n = 4 mice per group. Error bars in graphs b-m represent mean ± SEM, and P values were calculated by one-way ANOVA with Bonferroni correction. Results in a–m represent three independent experiments.

Source data

Extended Data Fig. 4 Various lysosome storages mutually induce STING signalling.

(a, b) 24-hour treatment of BafA1 in HeLa cells led to clustering and co-localizing STING with the ERGIC, GM130 (Glogi marker), and LAMP1 (Lysosome marker) (a) and quantification (b). Scale bar, 20 μm. n = 22 cells per group, two-way ANOVA with Bonferroni correction, mean ± SEM. (c) Quantitative real-time RT-PCR indicated that BafA1-induced lysosomal storage promotes IFN-I and ISG mRNA expression, downstream effectors of STING signalling. n = 4 independent samples. (d, e) Immunoblottings and qRT-PCR assays indicated a profound increase of cGAS-STING signalling and ISGs expression in Npc1 KO N2a cells upon treating STING agonist DMXAA. n = 3 independent samples, two-way ANOVA with Bonferroni correction, mean ± SEM. (f) Immunoblottings revealed an enhanced STING signalling upon diABZI treatment without Gla. (g) Increased clustering STING and phosphorylated STING in Gla-/- DRG neurons were detected and quantificated. n = 10 images per group. Unless otherwise specified, error bars in graphs c and g represent mean ± SEM, and P values were calculated by one-way ANOVA with Bonferroni correction. Results in a–g represent three independent experiments.

Source data

Extended Data Fig. 5 Cytosolic dsDNA accumulation induces cGAS-STING signalling.

(a, b) An increase in the accumulation of dsDNA was detected (a, as dsDNA puncta, indicated by yellow arrows) and quantified (b, n = 40 dsDNA puncta pooled from 4 mice in each group) in Gla-/- mice DRGs by immunostaining. Scale bars, 100 μm (left), 50 μm (right). Scale bars, 100 μm. Error bars in graph b represent mean ± SEM, and P values were calculated by one-way ANOVA with Bonferroni correction.

Source data

Extended Data Fig. 6 cGAS translocates and is indispensable for LSD pathogenesis.

(a) Nucleoplasmic translocation of cGAS was detected in primary neurons with lysosome dysfunction induced by BafA1. (b) Nucleoplasmic translocation of cGAS was observed in primary neurons following HSV-1 infection. (c) The effect of BafA1-induced lysosomal dysfunction on cGAS nucleoplasmic translocation was detected in astrocytes. (d) BafA1-induced activation of STING signalling was abolished by Cgas deletion. (e) qRT-PCR assays measured the BafA1-induced expression of ISGs, which was blocked by cGAS deletion. n = 3 independent samples, two-way ANOVA with Bonferroni correction, mean ± SEM. (f, g) Depletion of cGAS reduced the constant expression of ISGs and chemokines in N2a cells that lacked Ctsd (f) or Gba (g). n = 3 independent samples in graphs f-g. (h, i) The autoactivation of STING-TBK1-IRF3 signalling in Ctsd knockout (h) or Gba knockout (i) N2a cells was attenuated by cGAS depletion. (j) Quantification of pSTING intensity in mice brainstem neurons. n = 15 slices pooled from 4 mice in each group. (k, l) qRT-PCR assays and immunoblotting showed that the constitutive activation of STING signalling in Npc1 KO N2a cells was abolished by cGAS deletion, as indicated by attenuated ISG expression (k, n = 3 independent samples), diminished phosphorylation levels of TBK1, IRF3, and STAT1, and decreased RIG-I protein levels (l). (m) The autoactivation of STING-TBK1-IRF3 signalling in Hexb KO N2a cells was attenuated by depleting cGAS but not RIG-I or SREBP2. (n) qRT-PCR assays revealed the high knock-down efficiency of siRNAs targeting SREBP2. (oq) qRT-PCR assays revealed that depletion of cGAS, but not SREBP2, decreased ISG expression in Hexb KO (o), Npc1 KO (p), and Gba KO (q) N2a cells. n = 3 independent samples in graphs o-q. Unless otherwise specified, error bars in graphs e-q represent mean ± SEM and P values were calculated by one-way ANOVA with Bonferroni correction. NS, not significant. Results in a–q represent three independent experiments.

Source data

Extended Data Fig. 7 Digesting cytosolic dsDNA in neurons by DNase cures LSDs.

(a, b) Immunohistochemistry staining of NeuN (a) and its quantification (b) indicated that mTrex1 therapy prevented the neuronal death of 12-week-old mice with Hexb deletion. Scale bars, 1 mm (left), 100 μm (right). n = 20 slices pooled from 4 mice in each group. (c, d) Immunofluorescence imaging displayed that the number of surviving Purkinje cells was significantly increased in Npc1-/- mice with AAV-mTrex1-3x Flag administration, compared to AAV-mCherry administration (c). n = 20 slices pooled from 4 mice in WT + AAV-mCherry and WT + AAV-mTrex1 groups; n = 25 slices pooled from 5 mice in Npc1-/- + AAV-mCherry and Npc1-/- + AAV-mTrex1 groups (d). Scale bars, 100 μm. (e, f) mTrex1 therapy partially rescued symptoms of Niemann-Pick disease, including impairment of motor coordination and balance (e) and hindlimb clasping (f). n = 6 mice in WT + AAV-mCherry and WT + AAV-mTrex1 groups, and n = 5 mice in Npc1-/- + AAV-mCherry and Npc1-/- + AAV-mTrex1 groups. (g) Diagram indicating the experiment schedule of AAV administration, DRGs, and the analyses of footpads skin nerve fibres in WT and Gla-/- mice. (h, i) Immunofluorescence imaging revealed a diminished STING signalling in DRG neurons of Gla-/- mice in response to Trex1 therapy (h), as quantified by relative STING signal strength in individual mCherry+ or mTrex1-3xFlag+ DRG neurons in 6-month-old WT and Gla/- mice (i, n = 40 neurons). Scale bars, 20 μm. (j, k) Immunofluorescence imaging showed that mTrex1 therapy partially rescued the reduction in the number of small fibres from Gla-/- mice footpads (j) and quantified (k), n = 4 mice in WT + AAV-mCherry group, n = 5 mice in other groups. Scale bars, 100 μm. Error bars in graphs b-k represent mean ± SEM and P values were calculated by one-way ANOVA with Bonferroni correction.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Table 1

Oligo Information, Plasmid Information, and Antibody Information.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Statistical Source Data.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 1

Unprocessed western blots and gels.

Source Data Extended Data Fig. 2

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 7

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Chen, C., Mei, C. et al. Innate immune sensing of lysosomal dysfunction drives multiple lysosomal storage disorders. Nat Cell Biol 26, 219–234 (2024). https://doi.org/10.1038/s41556-023-01339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-023-01339-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing