Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window

Abstract

Neural circuitry is typically modulated via invasive brain implants and tethered optical fibres in restrained animals. Here we show that wide-field illumination in the second near-infrared spectral window (NIR-II) enables implant-and-tether-free deep-brain stimulation in freely behaving mice with stereotactically injected macromolecular photothermal transducers activating neurons ectopically expressing the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1). The macromolecular transducers, ~40 nm in size and consisting of a semiconducting polymer core and an amphiphilic polymer shell, have a photothermal conversion efficiency of 71% at 1,064 nm, the wavelength at which light attenuation by brain tissue is minimized (within the 400–1,800 nm spectral window). TRPV1-expressing neurons in the hippocampus, motor cortex and ventral tegmental area of mice can be activated with minimal thermal damage on wide-field NIR-II illumination from a light source placed at distances higher than 50 cm above the animal’s head and at an incident power density of 10 mW mm–2. Deep-brain stimulation via wide-field NIR-II illumination may open up opportunities for social behavioural studies in small animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Efficient photothermal conversion of MINDS in the NIR-II window.
Fig. 2: NIR-II photothermal activation of MINDS-sensitized TRPV1 in vitro.
Fig. 3: Through-scalp NIR-II neuromodulation of the mouse hippocampus and motor cortex.
Fig. 4: Immunohistology of the M2 region after NIR-II illumination.
Fig. 5: Through-scalp NIR-II stimulation of a deep-brain region.
Fig. 6: Immunohistology of the VTA region after NIR-II illumination.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

The custom MATLAB code used in this study is available at https://github.com/XiangWu96/Wu_NBME_21_code.

References

  1. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsai, H.-C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DiFrancesco, M. L. et al. Neuronal firing modulation by a membrane-targeted photoswitch. Nat. Nanotechnol. 15, 296–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  10. Ledesma, H. A. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  11. Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan, Z. et al. Using the tube test to measure social hierarchy in mice. Nat. Protoc. 14, 819–831 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, T.-I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajasethupathy, P. et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653–659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gong, X. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107, 38–51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bedbrook, C. N. et al. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat. Methods 16, 1176–1184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Miyazaki, T. et al. Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles. Cell Rep. 26, 1033–1043.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, X. et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl Acad. Sci. USA 116, 26332–26342 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  24. Munshi, R. et al. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 6, e27069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science 364, eaav5282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelidova, D. et al. Restoring light sensitivity using tunable near-infrared sensors. Science 368, 1108–1113 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Grandl, J. et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat. Neurosci. 13, 708–714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bashkatov, A. N., Genina, E. A., Kochubey, V. I. & Tuchin, V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D 38, 2543–2555 (2005).

    Article  CAS  Google Scholar 

  32. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Yao, J., Liu, B. & Qin, F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys. J. 96, 3611–3619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis, H. C. et al. Nanoscale heat transfer from magnetic nanoparticles and ferritin in an alternating magnetic field. Biophys. J. 118, 1502–1510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moiseenkova-Bell, V. Y., Stanciu, L. A., Serysheva, I. I., Tobe, B. J. & Wensel, T. G. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl Acad. Sci. USA 105, 7451–7455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berridge, M. J., Bootman, M. D. & Llewelyn Roderick, H. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C.-P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. Matthes, R. et al. Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm. Health Phys. 79, 431–440 (2000).

    Article  CAS  Google Scholar 

  42. Chen, X., Chen, Y., Xin, H., Wan, T. & Ping, Y. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Proc. Natl Acad. Sci. USA 117, 2395–2405 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, J., Darlington, T. R. & Lisberger, S. G. The neural basis for response latency in a sensory-motor behavior. Cereb. Cortex 30, 3055–3073 (2020).

    Article  PubMed  Google Scholar 

  47. Dhaka, A., Viswanath, V. & Patapoutian, A. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Zeng, X. et al. Visualization of intra‐neuronal motor protein transport through upconversion microscopy. Angew. Chem. Int. Ed. 58, 9262–9268 (2019).

    Article  CAS  Google Scholar 

  49. Zheng, W. et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 44, 1379–1415 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Zimprich, A. et al. A robust and reliable non-invasive test for stress responsivity in mice. Front. Behav. Neurosci. 8, 125 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Choi, C. The mazes with minds of their own. Nature 555, 127–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Ibsen, S., Tong, A., Schutt, C., Esener, S. & Chalasani, S. H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun. 6, 8264 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Nakatsuji, H. et al. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. Angew. Chem. Int. Ed. 54, 11725–11729 (2015).

    Article  CAS  Google Scholar 

  54. Lyu, Y., Xie, C., Chechetka, S. A., Miyako, E. & Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 138, 9049–9052 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Lodola, F., Martino, N., Tullii, G., Lanzani, G. & Antognazza, M. R. Conjugated polymers mediate effective activation of the mammalian ion channel transient receptor potential vanilloid 1. Sci. Rep. 7, 8477 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 8, e48622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haas, H. L. & Buzsaki, G. (eds) Synaptic Plasticity in the Hippocampus (Springer, 1988).

  58. Wang, Y. et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 142, 136–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, K.-T., Wei, K.-C. & Liu, H.-L. Theranostic strategy of focused ultrasound induced blood–brain barrier opening for CNS disease treatment. Front. Pharmacol. 10, 86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Su, Y. et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat. Methods 17, 852–860 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Lyu, Y. et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 12, 1801–1810 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, X. et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jang, M., Ruan, H., Judkewitz, B. & Yang, C. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique. Opt. Express 22, 5787–5807 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Martelli, F., Del Bianco, S. & Ismaelli, A. Light Propagation Through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (Society of Photo-Optical Instrumentation Engineers, 2009).

  67. Yaroslavsky, A. N. et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47, 2059–2073 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Nachabé, R. et al. Validation of interventional fiber optic spectroscopy with MR spectroscopy, MAS-NMR spectroscopy, high-performance thin-layer chromatography, and histopathology for accurate hepatic fat quantification. Invest. Radiol. 47, 209–216 (2012).

    Article  PubMed  CAS  Google Scholar 

  69. Prahl, S. A. Tabulated Molar Extinction Coefficient for Hemoglobin in Water http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1998).

  70. Mason, M. G., Nicholls, P. & Cooper, C. E. Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: implications for non invasive in vivo monitoring of tissues. Biochim. Biophys. Acta 1837, 1882–1891 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Bhattacharya, M. & Dutta, A. Computational modeling of the photon transport, tissue heating, and cytochrome C oxidase absorption during transcranial near-infrared stimulation. Brain Sci. 9, 179 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  72. Welsher, K., Sherlock, S. P. & Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl Acad. Sci. USA 108, 8943–8948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Welch, A. J. & van Gemert, M. J. C. (eds.). Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 1995).

  74. Tuchin, V. V. Light scattering study of tissues. Phys. Usp. 40, 495–515 (1997).

    Article  Google Scholar 

  75. Sabino, C. P. et al. The optical properties of mouse skin in the visible and near infrared spectral regions. J. Photochem. Photobiol. B 160, 72–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Samatham, R., Phillips, K. G. & Jacques, S. L. Assessment of optical clearing agents using reflectance-mode confocal scanning laser microscopy. J. Innov. Opt. Health Sci. 3, 183–188 (2010).

    Article  Google Scholar 

  77. Bashkatov, A. N. & Genina, E. A. Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. Proc. SPIE 6163, 616310 (2006).

    Article  Google Scholar 

  78. Ascenzi, A. & Fabry, C. Technique for dissection and measurement of refractive index of osteones. J. Biophys. Biochem. Cytol. 6, 139–142 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ugryumova, N., Matcher, S. J. & Attenburrow, D. P. Measurement of bone mineral density via light scattering. Phys. Med. Biol. 49, 469–483 (2004).

    Article  PubMed  Google Scholar 

  80. Binding, J. et al. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Opt. Express 19, 4833–4847 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Nathanson, J. L., Yanagawa, Y., Obata, K. & Callaway, E. M. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161, 441–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hong, G. et al. Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew. Chem. Int. Ed. 50, 4644–4648 (2011).

    Article  CAS  Google Scholar 

  83. Fu, T.-M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).

Download references

Acknowledgements

We thank W. T. Newsome, M. Z. Lin, X. Chen, L. Luo, H. Dai, D. Jiang and J. R. Sanes for helpful discussions; the Stanford Animal Histology Services for help with preparation of histologic specimens; G.H. acknowledges startup support from the Wu Tsai Neurosciences Institute of Stanford University, a National Institutes of Health (NIH) Pathway to Independence Award (National Institute on Aging 5R00AG056636-04), a National Science Foundation (NSF) CAREER Award (2045120), the Rita Allen Foundation Scholars Program, a gift from the Spinal Muscular Atrophy (SMA) Foundation, and seed grants from the Wu Tsai Neurosciences Institute and the Bio-X Initiative of Stanford University. X.W. acknowledges support from the Stanford Graduate Fellowship. K.S.O. acknowledges the NeuroTech training programme supported by the National Science Foundation under Grant No. 1828993. This work was performed in part at the Stanford Nano Shared Facilities (SNSF) and Cell Sciences Imaging Facility (CSIF) of Stanford University. K.P. thanks Nanyang Technological University (startup grant: M4081627) and Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2016-T2-1-098) for financial support. Some schematics were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

X.W., Y.J., K.P. and G.H. conceived and designed the project; X.W., Y.J., N.J.R., F.Y., Q.Z., R.Y., J.L., S.C., W.R., A.S. and K.S.O. performed the experiments; X.W., Y.J., N.J.R., F.Y., Q.Z., R.Y., J.L., S.C., W.R., K.P. and G.H. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kanyi Pu or Guosong Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Thomas McHugh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Main Supplementary Information

Supplementary notes, figures, tables, video captions and references.

Reporting Summary

Peer Review File

Supplementary Video 1

Distant 1,064 nm illumination induces mouse circling through the scalp in a freely behaving mouse.

Supplementary Video 2

Mouse trajectory in a Y maze during the pre-test.

Supplementary Video 3

Mouse trajectory in a Y maze during the post-test.

Source data

SD for Fig. 1

Source data.

SD for Fig. 2

Source data.

SD for Fig. 3

Source data.

SD for Fig. 4

Source data.

SD for Fig. 5

Source data.

SD for Fig. 6

Source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Jiang, Y., Rommelfanger, N.J. et al. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat. Biomed. Eng 6, 754–770 (2022). https://doi.org/10.1038/s41551-022-00862-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00862-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research