Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GGA3-mediated recycling of the RET receptor tyrosine kinase contributes to cell migration and invasion

Abstract

The RET receptor tyrosine kinase plays important roles in regulating cellular proliferation, migration, and survival in the normal development of neural crest derived tissues. However, aberrant activation of RET, through oncogenic mutations or overexpression, can contribute to tumourigenesis, regional invasion, and metastasis of several human cancers. RET is expressed as two main isoforms with unique C-terminal sequences that differ in protein interactions and subcellular trafficking in response to RET activation, and which also have distinct oncogenic potentials. The long isoform, termed RET51, is internalized from the membrane in response to stimulation by its ligand, GDNF, but is known to recycle back to the surface via RAB11 endosomes. However, the mechanisms regulating this process and its cellular effects have not been defined. Here, we show that recycling of RET51 requires a multicomponent complex that includes the endosomal-sorting protein GGA3, which mediates GDNF-dependent slow recycling of RET51 receptors to the plasma membrane. Our data show that the GRB2 adapter associates with RET51 through interactions with its C-terminal sequences, facilitating recruitment of active ARF6 and GGA3 interaction, and that depletion of GGA3 or ARF6 reduced RET51 recycling. Further, GGA3 knockdown accelerated RET51 degradation and also attenuated RET-mediated AKT activation. Finally, we showed that recycling of RET51 to the cell surface through association with GGA3 and ARF6 contributes to RET51-dependent cell motility, migration, and invasion. Our data establish RET recycling as a mechanism coordinating location and duration of RET signals in order to direct cell movement and invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmid SL. Reciprocal regulation of signaling and endocytosis: implications for the evolving cancer cell. J Cell Biol. 2017;216:2623–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sorkin A, Fortian A. Endocytosis and endosomal sorting of receptor tyrosine kinases. In: Wheeler D, Yarden Y, (eds). Receptor tyrosine kinases: structure, functions and role in human disease. New York, NY: Springer; 2015.

    Google Scholar 

  3. Frankel EB, Audhya A. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol. 2018;74:4–10.

    CAS  PubMed  Google Scholar 

  4. Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5:a017459.

    PubMed  PubMed Central  Google Scholar 

  5. Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6:a022616.

    PubMed  PubMed Central  Google Scholar 

  6. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14:173–86.

    CAS  PubMed  Google Scholar 

  7. Mulligan LM. Exploiting insights on the RET receptor for personalized cancer medicine. Endocr Relat Cancer. 2018;25:T1–T12.

    Google Scholar 

  8. Mulligan LM. GDNF and the RET receptor in cancer: new insights and therapeutic potential. Front Physiol. 2019;9:1873.

    PubMed  PubMed Central  Google Scholar 

  9. Tahira T, Ishizaka Y, Itoh F, Sugimura T, Nagao M. Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene. 1990;5:97–102.

    CAS  PubMed  Google Scholar 

  10. Tsui-Pierchala BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson EM Jr. The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem. 2002;277:34618–25.

    CAS  PubMed  Google Scholar 

  11. Lian EY, Maritan SM, Cockburn JG, Kasaian K, Crupi MJ, Hurlbut D, et al. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer. 2017;24:53–69.

    CAS  PubMed  Google Scholar 

  12. Crupi MJ, Yoganathan P, Bone LN, Lian E, Fetz A, Antonescu CN, et al. Distinct temporal regulation of RET isoform internalization: roles of clathrin and AP2. Traffic. 2015;16:1155–73.

    CAS  PubMed  Google Scholar 

  13. Richardson DS, Rodrigues DM, Hyndman BD, Crupi MJ, Nicolescu AC, Mulligan LM. Alternative splicing results in RET isoforms with distinct trafficking properties. Mol Biol Cell. 2012;23:3838–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hyndman BD, Crupi MJF, Peng S, Bone LN, Rekab AN, Lian EY, et al. Differential recruitment of E3 ubiquitin ligase complexes regulates RET isoform internalization. J Cell Sci. 2017;130:3282–96.

    CAS  PubMed  Google Scholar 

  15. Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell. 2015;26:4412–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M. GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell. 2011;20:751–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Puertollano R, Bonifacino JS. Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol. 2004;6:244–51.

    CAS  PubMed  Google Scholar 

  18. Plaza-Menacho I, Barnouin K, Barry R, Borg A, Orme M, Chauhan R, et al. RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements. Cell Rep. 2016;17:3319–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Besset V, Scott RP, Ibanez CF. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem. 2000;275:39159–66.

    CAS  PubMed  Google Scholar 

  20. Orth JD, Krueger EW, Cao H, McNiven MA. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci USA. 2002;99:167–72.

    CAS  PubMed  Google Scholar 

  21. Richardson DS, Lai AZ, Mulligan LM. RET ligand-induced internalization and its consequences for downstream signaling. Oncogene. 2006;25:3206–11.

    CAS  PubMed  Google Scholar 

  22. Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 1994;13:1287–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haugsten EM, Brech A, Liestol K, Norman JC, Wesche J. Photoactivation approaches reveal a role for Rab11 in FGFR4 recycling and signalling. Traffic. 2014;15:665–83.

    CAS  PubMed  Google Scholar 

  24. Hung MC, Yang R, Sun Y. Powering tumor metastasis with recycled fuel. Cancer Cell. 2016;30:374–5.

    CAS  PubMed  Google Scholar 

  25. Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, et al. GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 2016;30:444–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Maritan SM, Lian EY, Mulligan LM. An efficient and flexible cell aggregation method for 3d spheroid production. J Vis Exp. 2017;121:e55544.

    Google Scholar 

  27. Mutch LJ, Howden JD, Jenner EP, Poulter NS, Rappoport JZ. Polarised clathrin-mediated endocytosis of EGFR during chemotactic invasion. Traffic. 2014;15:648–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhinge K, Yang L, Terra S, Nasir A, Muppa P, Aubry MC, et al. EGFR mediates activation of RET in lung adenocarcinoma with neuroendocrine differentiation characterized by ASCL1 expression. Oncotarget. 2017;8:27155–65.

    PubMed  PubMed Central  Google Scholar 

  29. Le Hir H, Charlet-Berguerand N, Gimenez-Roqueplo A, Mannelli M, Plouin P, de Franciscis V, et al. Relative expression of the RET9 and RET51 isoforms in human pheochromocytomas. Oncology. 2000;58:311–8.

    PubMed  Google Scholar 

  30. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–58.

    PubMed  Google Scholar 

  31. Alberti L, Borrello MG, Ghizzoni S, Torriti F, Rizzetti MG, Pierotti MA. Grb2 binding to the different isoforms of Ret tyrosine kinase. Oncogene. 1998;17:1079–87.

    CAS  PubMed  Google Scholar 

  32. Pinilla-Macua I, Watkins SC, Sorkin A. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes. Proc Natl Acad Sci USA. 2016;113:2122–7.

    CAS  PubMed  Google Scholar 

  33. Haines E, Saucier C, Claing A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J Biol Chem. 2014;289:5687–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu Z, Xu R, Liu J, Zhang Y, Du J, Li W, et al. GEP100 regulates epidermal growth factor-induced MDA-MB-231 breast cancer cell invasion through the activation of Arf6/ERK/uPAR signaling pathway. Exp Cell Res. 2013;319:1932–41.

    CAS  PubMed  Google Scholar 

  35. Li R, Peng C, Zhang X, Wu Y, Pan S, Xiao Y. Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci. 2017;182:80–4.

    CAS  PubMed  Google Scholar 

  36. Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, et al. ARF6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Lett. 2017;388:303–11.

    CAS  PubMed  Google Scholar 

  37. Oka S, Uramoto H, Shimokawa H, Yamada S, Tanaka F. Epidermal growth factor receptor-GEP100-Arf6 axis affects the prognosis of lung adenocarcinoma. Oncology. 2014;86:263–70.

    CAS  PubMed  Google Scholar 

  38. Gong X, Didan Y, Lock JG, Stromblad S. KIF13A-regulated RhoB plasma membrane localization governs membrane blebbing and blebby amoeboid cell migration. EMBO J. 2018;37:e98994.

  39. Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A, et al. Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA. 2004;101:6647–52.

    CAS  PubMed  Google Scholar 

  40. Matsumoto Y, Sakurai H, Kogashiwa Y, Kimura T, Matsumoto Y, Shionome T, et al. Inhibition of epithelial-mesenchymal transition by cetuximab via the EGFR-GEP100-Arf6-AMAP1 pathway in head and neck cancer. Head Neck. 2017;39:476–85.

    PubMed  Google Scholar 

  41. Rainero E, Caswell PT, Muller PA, Grindlay J, McCaffrey MW, Zhang Q, et al. Diacylglycerol kinase alpha controls RCP-dependent integrin trafficking to promote invasive migration. J Cell Biol. 2012;196:277–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ratcliffe CD, Sahgal P, Parachoniak CA, Ivaska J, Park M. Regulation of cell migration and beta1 integrin trafficking by the endosomal adaptor GGA3. Traffic. 2016;17:670–88.

    CAS  PubMed  Google Scholar 

  43. Yamauchi Y, Miura Y, Kanaho Y. Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs. Adv Biol Regul. 2017;63:115–21.

    CAS  PubMed  Google Scholar 

  44. Ren X, Hurley JH. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J. 2010;29:1045–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science. 2002;297:1700–3.

    CAS  PubMed  Google Scholar 

  46. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8:995–1004.

    CAS  PubMed  Google Scholar 

  47. Gorelik R, Gautreau A. Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc. 2014;9:1931–43.

    CAS  PubMed  Google Scholar 

  48. Crupi MJF, Richardson DS, Mulligan LM. Cell-surface biotinylation of receptor tyrosine kinases to investigate intracellular trafficking. In: Germano S, editor. Methods in molecular biology: receptor tyrosine kinases: methods and protocols, vol. 1233, Methods in molecular biology ed. New York, USA: Springer Science, 2015, p 91–102.

    Google Scholar 

  49. Garay C, Judge G, Lucarelli S, Bautista S, Pandey R, Singh T, et al. Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol Biol Cell. 2015;26:3504–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucarelli S, Delos Santos RC, Antonescu CN. Measurement of epidermal growth factor receptor-derived signals within plasma membrane clathrin structures. Methods Mol Biol. 2017;1652:191–225.

    CAS  PubMed  Google Scholar 

  51. Agard DA, Sedat JW. Three-dimensional architecture of a polytene nucleus. Nature. 1983;302:676–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Taran Gujral (Fred Hutchinson Cancer Research Center) for valuable discussion, and Dr Julio Vazquez (Fred Hutchinson Cancer Research Center), Kimberly Lau, and Paul Paroutis (Hospital for Sick Children) for assistance with imaging, as well as Carrie Wei, Johanna Mayer, Stefanie Lucarelli, and Rob McCleave for technical assistance.

Funding

This work was supported by operating grants from the Canadian Institutes of Health Research (CIHR) (MOP-142303, LMM; PJT-156355, CNA), a Queen Elizabeth II Graduate Scholarship in Science and Technology (MJFC), studentships from the Terry Fox Research Institute Training Program in Transdisciplinary Cancer Research (MJFC, SMM, ER-A, EYL, ANR), and by Ontario Graduate Scholarships (SMM, EYL), a Mitacs Globalink Research Graduate Fellowship (ER-A), Queen’s Research Opportunities Fund and CIHR Post-doctoral Fellowships (SM), a Master’s CIHR award (SMM), CONACyT (ER-A), as well as a Journal of Cell Science Travelling Fellowship from The Company of Biologists (MJFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois M. Mulligan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crupi, M.J.F., Maritan, S.M., Reyes-Alvarez, E. et al. GGA3-mediated recycling of the RET receptor tyrosine kinase contributes to cell migration and invasion. Oncogene 39, 1361–1377 (2020). https://doi.org/10.1038/s41388-019-1068-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1068-z

This article is cited by

Search

Quick links