Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration

Abstract

Focal adhesion turnover is a complex process required for cell migration. We have previously shown that the Ste20-like kinase (SLK) is required for cell migration and efficient focal adhesion (FA) turnover in a FA kinase (FAK)-dependent manner. However, the role of SLK in this process remains unclear. Using a candidate substrate approach, we show that SLK phosphorylates the adhesion adapter protein paxillin on serine 250. Serine 250 phosphorylation is required for paxillin redistribution and cell motility. Mutation of paxillin serine 250 prevents its phosphorylation by SLK in vitro and results in impaired migration in vivo as evidenced by an accumulation of phospho-FAK-Tyr397 and altered FA turnover rates. Together, our data suggest that SLK phosphorylation of paxillin on serine 250 is required for FAK-dependent FA dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Horwitz AR, Parsons JT . Cell migration—movin’ on [comment]. Science 1999; 286: 1102–1103.

    Article  CAS  Google Scholar 

  2. Abou Z N, Valles AM, Boyer B . Serine phosphorylation regulates paxillin turnover during cell migration. Cell Commun Signal 2006; 4: 8.

    Article  Google Scholar 

  3. Bellis SL, Perrotta JA, Curtis MS, Turner CE . Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin. Biochem J 1997; 325 (Pt 2): 375–381.

    Article  CAS  Google Scholar 

  4. Hoellerer MK, Noble ME, Labesse G, Campbell ID, Werner JM, Arold ST . Molecular recognition of paxillin LD motifs by the focal adhesion targeting domain. Structure 2003; 11: 1207–1217.

    Article  CAS  Google Scholar 

  5. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 2004; 6: 154–161.

    Article  CAS  Google Scholar 

  6. Manes S, Mira E, Gomez-Mouton C, Lacalle RA, Martinez C . Cells on the move: a dialogue between polarization and motility. IUBMB Life 2000; 49: 89–96.

    Article  CAS  Google Scholar 

  7. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B . Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 2003; 116 (Pt 22): 4605–4613.

    Article  CAS  Google Scholar 

  8. Ezratty EJ, Partridge MA, Gundersen GG . Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 2005; 7: 581–590.

    Article  CAS  Google Scholar 

  9. Gilcrease MZ . Integrin signaling in epithelial cells. Cancer Lett 2007; 247: 1–25.

    Article  CAS  Google Scholar 

  10. Romer LH, Birukov KG, Garcia JG . Focal adhesions: paradigm for a signaling nexus. Circ Res 2006; 98: 606–616.

    Article  CAS  Google Scholar 

  11. Broussard JA, Webb DJ, Kaverina I . Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 2008; 20: 85–90.

    Article  CAS  Google Scholar 

  12. Efimov A, Schiefermeier N, Grigoriev I, Brown MC, Turner CE, Small JV et al. Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. J Cell Sci 2008; 121 (Pt 2): 196–204.

    Article  CAS  Google Scholar 

  13. Efimov A, Kaverina I . Significance of microtubule catastrophes at focal adhesion sites. Cell Adh Migr 2009; 3: 285–287.

    Article  CAS  Google Scholar 

  14. Kaverina I, Krylyshkina O, Small JV . Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J Cell Biol 1999; 146: 1033–1044.

    Article  CAS  Google Scholar 

  15. O'Reilly PG, Wagner S, Franks DJ, Cailliau K, Browaeys E, Dissous C et al. The Ste20-like kinase SLK is required for cell cycle progression through G2. J Biol Chem 2005; 280: 42383–42390.

    Article  CAS  Google Scholar 

  16. Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, McKay M et al. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration. PLoS ONE 2008; 3: e1868.

    Article  Google Scholar 

  17. Wagner S, Flood TA, O'Reilly P, Hume K, Sabourin LA . Association of the Ste20-like kinase (SLK) with the microtubule. Role in Rac1-mediated regulation of actin dynamics during cell adhesion and spreading. J Biol Chem 2002; 277: 37685–37692.

    Article  CAS  Google Scholar 

  18. Roovers K, Wagner S, Storbeck CJ, O’Reilly P, Lo V, Northey JJ et al. The Ste20-like kinase SLK is required for ErbB2-driven breast cancer cell motility. Oncogene 2009; 28: 2839–2848.

    Article  CAS  Google Scholar 

  19. Brown MC, Turner CE . Paxillin: adapting to change. Physiol Rev 2004; 84: 1315–1339.

    Article  CAS  Google Scholar 

  20. Brown MC, Turner CE . Roles for the tubulin- and PTP-PEST-binding paxillin LIM domains in cell adhesion and motility. Int J Biochem Cell Biol 2002; 34: 855–863.

    Article  CAS  Google Scholar 

  21. Webb DJ, Schroeder MJ, Brame CJ, Whitmore L, Shabanowitz J, Hunt DF et al. Paxillin phosphorylation sites mapped by mass spectrometry. J Cell Sci 2005; 118 (Pt 21): 4925–4929.

    Article  CAS  Google Scholar 

  22. Etienne-Manneville S, Hall A . Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 2001; 106: 489–498.

    Article  CAS  Google Scholar 

  23. Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002; 22: 901–915.

    Article  CAS  Google Scholar 

  24. Webb DJ, Brown CM, Horwitz AF . Illuminating adhesion complexes in migrating cells: moving toward a bright future. Curr Opin Cell Biol 2003; 15: 614–620.

    Article  CAS  Google Scholar 

  25. Scheswohl DM, Harrell JR, Rajfur Z, Gao G, Campbell SL, Schaller MD . Multiple paxillin binding sites regulate FAK function. J Mol Signal 2008; 3: 1.

    Article  Google Scholar 

  26. Deramaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, De Mey J et al. FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Mol Biol Cell 2011; 22: 964–975.

    Article  CAS  Google Scholar 

  27. Zimerman B, Volberg T, Geiger B . Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil Cytoskeleton 2004; 58: 143–159.

    Article  CAS  Google Scholar 

  28. Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM . Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol 2000; 148: 957–970.

    Article  CAS  Google Scholar 

  29. Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR . Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol 2006; 173: 587–589.

    Article  CAS  Google Scholar 

  30. Wu HY, Liao PC . Analysis of protein phosphorylation using mass spectrometry. Chang Gung Med J 2008; 31: 217–227.

    PubMed  Google Scholar 

  31. Delom F, Chevet E . Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 2006; 4: 15.

    Article  Google Scholar 

  32. Loyet KM, Stults JT, Arnott D . Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol Cell Proteomics 2005; 4: 235–245.

    Article  CAS  Google Scholar 

  33. Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E . Mass spectrometry technologies for proteomics. Brief Funct Genomic Proteomic 2006; 4: 295–320.

    Article  CAS  Google Scholar 

  34. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K . JNK phosphorylates paxillin and regulates cell migration. Nature 2003; 424: 219–223.

    Article  CAS  Google Scholar 

  35. Duclos B, Marcandier S, Cozzone AJ . Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol 1991; 201: 10–21.

    Article  CAS  Google Scholar 

  36. Storbeck CJ, Wagner S, O'Reilly P, McKay M, Parks R, Westphal H et al. The Ldb1 and Ldb2 Transcriptional co-factors interact with the Ste20-like kinase SLK and regulate cell migration. Mol Biol Cell 2009; 20: 4174–4182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institute for Health Research and the Canadian Breast Cancer Foundation. JLQ, KB and KNA-Z are the recipient of a Canadian Breast Cancer Foundation scholar award. LAS is the recipient of a CIHR scholar award. PO is the recipient of an OGSST studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Sabourin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quizi, J., Baron, K., Al-Zahrani, K. et al. SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration. Oncogene 32, 4656–4663 (2013). https://doi.org/10.1038/onc.2012.488

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.488

Keywords

This article is cited by

Search

Quick links