Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells

Abstract

Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) is one of the most highly responsive interferon-stimulated genes, but its biological functions are poorly understood. In this study, we aimed to explore the underlying mechanisms by which depleting IFIT2 induces the migration of oral squamous cell carcinoma (OSCC) cells. Stable IFIT2-depleted cells underwent epithelial–mesenchymal transition (EMT) and exhibited enhanced cell motility and invasiveness compared with control cells. Furthermore, our results indicated that atypical protein kinase C (aPKC) was activated in IFIT2-depleted cells. Inhibition of aPKC using a specific myristoylated PKCζ pseudosubstrate or aPKC-targeting small interfering RNA (siRNA) abolished IFIT2 depletion-induced EMT, migration and invasion, indicating that the activation of aPKC has an essential role in regulating the cellular responses induced by IFIT2 depletion. Following tail-vein injection, IFIT2-depleted OSCC cells colonized not only the lungs but also the heart, head and neck, retroperitoneal, and peritoneal cavities; whereas control cells predominantly localized in the lungs. IFIT2 mRNA and protein expression was positively associated with E-cadherin expression in OSCC patient specimens. The loss of E-cadherin and IFIT2 expression was observed at the invasive front of OSCC tumors, suggesting that the loss of IFIT2 may induce EMT and lead to the metastasis of OSCCs. OSCC patients possessing reduced IFIT2-expression levels (IFIT2 <50%) exhibited greater rates of distant metastasis and poor prognoses compared with OSCC patients who expressed greater levels of IFIT2 (IFIT2 50%). These results demonstrate that IFIT2 depletion activates the aPKC pathway and consequently induces EMT, cell migration and invasion. Most importantly, depleting IFIT2 may participate in OSCC tumor progression, particularly during metastasis. Taken together, our study demonstrates that IFIT2, a protein responsible for interferon stimulation, may prevent OSCC metastasis and serve as a valuable prognostic marker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  2. Department of Health, TEY. Cancer Registry Annual Report in Taiwan Area, 2008–2009. Department of Health, The Executive Yuan, Taiwan, 2010.

  3. Bagan JV, Scully C . Recent advances in Oral Oncology 2008; squamous cell carcinoma aetiopathogenesis and experimental studies. Oral Oncol 2009; 45: e45–e48.

    Article  PubMed  Google Scholar 

  4. Fan S, Tang QL, Lin YJ, Chen WL, Li JS, Huang ZQ et al. A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma. Int J Oral Sci 2011; 3: 180–191.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leon X, Quer M, Diez S, Orus C, Lopez-Pousa A, Burgues J . Second neoplasm in patients with head and neck cancer. Head Neck 1999; 21: 204–210.

    Article  CAS  PubMed  Google Scholar 

  6. Shingaki S, Takada M, Sasai K, Bibi R, Kobayashi T, Nomura T et al. Impact of lymph node metastasis on the pattern of failure and survival in oral carcinomas. Am J Surg 2003; 185: 278–284.

    Article  PubMed  Google Scholar 

  7. Gonzalez-Garcia R, Naval-Gias L, Roman-Romero L, Sastre-Perez J, Rodriguez-Campo FJ . Local recurrences and second primary tumors from squamous cell carcinoma of the oral cavity: a retrospective analytic study of 500 patients. Head Neck 2009; 31: 1168–1180.

    Article  PubMed  Google Scholar 

  8. Rao DN, Shroff PD, Chattopadhyay G, Dinshaw KA . Survival analysis of 5595 head and neck cancers—results of conventional treatment in a high-risk population. Br J Cancer 1998; 77: 1514–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sano D, Myers JN . Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev 2007; 26: 645–662.

    Article  CAS  PubMed  Google Scholar 

  10. Bell RB, Kademani D, Homer L, Dierks EJ, Potter BE . Tongue cancer: Is there a difference in survival compared with other subsites in the oral cavity? J Oral Maxillofac Surg 2007; 65: 229–236.

    Article  PubMed  Google Scholar 

  11. Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004; 350: 1937–1944.

    Article  PubMed  Google Scholar 

  12. Friedl P, Wolf K . Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362–374.

    Article  CAS  PubMed  Google Scholar 

  13. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ et al. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 2005; 206: 451–457.

    Article  CAS  PubMed  Google Scholar 

  14. Parri M, Chiarugi P . Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tsuji T, Ibaragi S, Hu GF . Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 2009; 69: 7135–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Weinberg RA . Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14: 818–829.

    Article  CAS  PubMed  Google Scholar 

  17. Yilmaz M, Christofori G . EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28: 15–33.

    Article  PubMed  Google Scholar 

  18. Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M . Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci 2003; 94: 593–597.

    Article  CAS  PubMed  Google Scholar 

  19. Levy D, Larner A, Chaudhuri A, Babiss LE, Darnell JE . Interferon-stimulated transcription: isolation of an inducible gene and identification of its regulatory region. Proc Natl Acad Sci USA 1986; 83: 8929–8933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terenzi F, Hui DJ, Merrick WC, Sen GC . Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem 2006; 281: 34064–34071.

    Article  CAS  PubMed  Google Scholar 

  21. Saha S, Sugumar P, Bhandari P, Rangarajan PN . Identification of Japanese encephalitis virus-inducible genes in mouse brain and characterization of GARG39/IFIT2 as a microtubule-associated protein. J Gen Virol 2006; 87: 3285–3289.

    Article  CAS  PubMed  Google Scholar 

  22. Lai KC, Chang KW, Liu CJ, Kao SY, Lee TC . IFIT2 protein inhibits migration activity and increases survival in oral squamous cell carcinoma. Mol Cancer Res 2008; 6: 1–9.

    Article  Google Scholar 

  23. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24: 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  24. Christiansen JJ, Rajasekaran AK . Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006; 66: 8319–8326.

    CAS  PubMed  Google Scholar 

  25. Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ . PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 2010; 11: 103–112.

    Article  CAS  PubMed  Google Scholar 

  26. Yonezawa T, Kurata R, Kimura M, Inoko H . PKC delta and epsilon in drug targeting and therapeutics. Recent Pat DNA Gene Seq 2009; 3: 96–101.

    Article  CAS  PubMed  Google Scholar 

  27. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  28. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T . A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2000; 2: 540–547.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 2001; 152: 1183–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A . Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 2005; 170: 895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Etienne-Manneville S, Hall A . Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 2003; 421: 753–756.

    Article  CAS  PubMed  Google Scholar 

  32. Etienne-Manneville S . Cdc42—the centre of polarity. J Cell Sci 2004; 117: 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  33. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  34. Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB . Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 2000; 97: 11960–11965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sutherland C, Leighton IA, Cohen P . Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 1993; 296: 15–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doble BW, Woodgett JR . GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003; 116: 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  37. Doble BW, Woodgett JR . Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs 2007; 185: 73–84.

    Article  CAS  PubMed  Google Scholar 

  38. Mishra R . Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 2010; 9: 144.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA et al. The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res 2007; 67: 7756–7764.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 2010; 29: 3490–3500.

    Article  CAS  PubMed  Google Scholar 

  41. Behrens J, Mareel MM, Van Roy FM, Birchmeier W . Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 1989; 108: 2435–2447.

    Article  CAS  PubMed  Google Scholar 

  42. Schmalhofer O, Brabletz S, Brabletz T . E-cadherin beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28: 151–166.

    Article  CAS  PubMed  Google Scholar 

  43. Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E et al. WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA 2003; 100: 10429–10434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005; 115: 44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu X, Kang Y . Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 2007; 12: 153–162.

    Article  PubMed  Google Scholar 

  46. Lorusso G, Ruegg C . New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 2012; 22: 226–233.

    Article  CAS  PubMed  Google Scholar 

  47. Ferlito A, Rinaldo A, Buckley JG, Mondin V . General considerations on distant metastases from head and neck cancer. ORL J Otorhinolaryngol Relat Spec 2001; 63: 189–191.

    Article  CAS  PubMed  Google Scholar 

  48. Sanjiv K, Su TL, Suman S, Kakadiya R, Lai TC, Wang HY et al. The novel DNA alkylating agent BO-1090 suppresses the growth of human oral cavity cancer in xenografted and orthotopic mouse models. Int J Cancer 2011; 130: 1440–1450.

    Article  PubMed  Google Scholar 

  49. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chang SY, Su PF, Lee TC . Ectopic expression of interleukin-1 receptor type II enhances cell migration through activation of the pre-interleukin 1alpha pathway. Cytokine 2009; 45: 32–38.

    Article  CAS  PubMed  Google Scholar 

  51. Kim DW . Real time quantitative PCR. Exp Mol Med 2001; 33: 101–109.

    CAS  PubMed  Google Scholar 

  52. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–3245.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Pathological Core Laboratory supported by Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC for their excellent technical assistance on pathological examination. We also thank Dr Michael Hsiao (Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC) for providing lentiviral particles and experimental assistance. This work was also supported by the Academia Sinica and grants from the National Science Council, Taiwan, ROC (NSC 93–3112-B-001–036; NSC 98–2320-B-001–002-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, K., Liu, C., Chang, K. et al. Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells. Oncogene 32, 3686–3697 (2013). https://doi.org/10.1038/onc.2012.384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.384

Keywords

This article is cited by

Search

Quick links