Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retinoid-suppressed phosphorylation of RARα mediates the differentiation pathway of osteosarcoma cells

Abstract

Although retinoic acid (RA) is a potent agent that coordinates inhibition of proliferation with differentiation of many cell types, RA-mediated signaling pathways in osteosarcoma cell differentiation are uncharacterized. In this study, we show that in human U2OS osteosarcoma cells, decreased phosphorylation of RA receptor alpha (RARα) by RA treatment or overexpressing a phosphorylation-defective mutant RARαS77A results in the inhibition of proliferation and induction of differentiation, and that U2OS cells transduced with RARαS77A suppresses tumor formation in nude mice. Moreover, using different human primary osteosarcoma cells and human mesenchymal stem cells for gene expression analysis, we found that either RA or RARαS77A induces many of the same differentiation response pathways and signaling molecules involved in U2OS cell differentiation. In addition, overexpression of the fibroblast growth factor 8f (FGF8f), one of the downstream targets induced by both RA and RARαS77A in U2OS cells, inhibits proliferation and induces expression of osteoblastic differentiation regulators. Hence, these data strongly suggest that RA-suppressed phosphorylation of RARα induces FGF8f expression to mediate differentiation response pathway in U2OS osteosarcoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Aranda A, Pascual A . (2001). Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269–1304.

    Article  CAS  PubMed  Google Scholar 

  • Bacci G, Ferrari S, Longhi A, Perin S, Forni C, Fabbri N et al. (2001). Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy. Eur J Cancer 37: 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Barroga E, Kadosawa T, Okumura M, Fujinaga T . (1999). Induction of functional differentiation and growth inhibition in vitro of canine osteosarcoma by 22-oxacalcitriol, calcitriol and all-trans retinoic acid. Zentralbl Veterinarmed A 46: 573–579.

    Article  CAS  PubMed  Google Scholar 

  • Barroga EF, Kadosawa T, Okumura M, Fujinaga T . (2000). Influence of vitamin D and retinoids on the induction of functional differentiation in vitro of canine osteosarcoma clonal cells. Vet J 159: 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Bastien J, Rochette-Egly C . (2004). Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Hickman JA . (1993). Differentiation: a suitable strategy for cancer chemotherapy? Anticancer Drug Des 8: 299–322.

    CAS  PubMed  Google Scholar 

  • Benayahu D, Fried A, Shamay A, Cunningham N, Blumberg S, Wientroub S . (1994). Differential effects of retinoic acid and growth factors on osteoblastic markers and CD10/NEP activity in stromal-derived osteoblasts. J Cell Biochem 56: 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Brondani V, Hamy F . (2000). Retinoic acid switches differential expression of FGF8 isoforms in LNCaP cells. Biochem Biophys Res Commun 272: 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Brondani V, Klimkait T, Egly JM, Hamy F . (2002). Promoter of FGF8 reveals a unique regulation by unliganded RARalpha. J Mol Biol 319: 715–728.

    Article  CAS  PubMed  Google Scholar 

  • Chambon P . (1996). A decade of molecular biology of retinoic acid receptors. FASEB J 10: 940–954.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR . (2004). Bone morphogenetic proteins. Growth Factors 22: 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Clark JC, Dass CR, Choong PF . (2008). A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol 134: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Crowe DL, Kim R . (2002). A phosphorylation defective retinoic acid receptor mutant mimics the effects of retinoic acid on EGFR mediated AP-1 expression and cancer cell proliferation. Cancer Cell Int 2: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans RM . (1988). The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RP . (2005). Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118: 5171–5180.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RP, Morgan DO . (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78: 713–724.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi RT, Xiao G . (2003). Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88: 446–454.

    Article  CAS  PubMed  Google Scholar 

  • Gazit D, Ebner R, Kahn AJ, Derynck R . (1993). Modulation of expression and cell surface binding of members of the transforming growth factor-beta superfamily during retinoic acid-induced osteoblastic differentiation of multipotential mesenchymal cells. Mol Endocrinol 7: 189–198.

    CAS  PubMed  Google Scholar 

  • Gemel J, Gorry M, Ehrlich GD, MacArthur CA . (1996). Structure and sequence of human FGF8. Genomics 35: 253–257.

    Article  CAS  PubMed  Google Scholar 

  • He Q, Peng H, Collins SJ, Triche TJ, Wu L . (2004). Retinoid-modulated MAT1 ubiquitination and CAK activity. FASEB J 18: 1734–1736.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LM, Weston AD, Underhill TM . (2003). Molecular mechanisms regulating chondroblast differentiation. J Bone Joint Surg Am 85-A (Suppl 2): 124–132.

    Article  Google Scholar 

  • Hong SH, Kadosawa T, Nozaki K, Mochizuki M, Matsunaga S, Nishimura R et al. (2000a). In vitro retinoid-induced growth inhibition and morphologic differentiation of canine osteosarcoma cells. Am J Vet Res 61: 69–73.

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Mochizuki M, Nishimura R, Sasaki N, Kadosawa T, Matsunaga S . (2000b). Differentiation induction of canine osteosarcoma cell lines by retinoids. Res Vet Sci 68: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz MC, Bothwell AL, Hesslein DG, Pflugh DL, Schatz DG . (2005). B cells and osteoblast and osteoclast development. Immunol Rev 208: 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RA, Nurcombe V, Cool SM . (2006). Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis. Gene 379: 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson A, Johansson S, Branting M, Melhus H . (2004). Vitamin A differentially regulates RANKL and OPG expression in human osteoblasts. Biochem Biophys Res Commun 322: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Katoh M . (2006). Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 5: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  • Leroy P, Krust A, Zelent A, Mendelsohn C, Garnier JM, Kastner P et al. (1991). Multiple isoforms of the mouse retinoic acid receptor alpha are generated by alternative splicing and differential induction by retinoic acid. EMBO J 10: 59–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li L . (2006). Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 31: 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Kohlmeier S, Wang CY . (2008). Wnt signaling and skeletal development. Cell Signal 20: 999–1009.

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Wang A, Payne KJ, Peng H, Wang JG, Parrish YK et al. (2007). Intrinsic retinoic acid receptor alpha-cyclin-dependent kinase-activating kinase signaling involves coordination of the restricted proliferation and granulocytic differentiation of human hematopoietic stem cells. Stem Cells 25: 2628–2637.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES, Evans RM . (1991). A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66: 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Mattila MM, Harkonen PL . (2007). Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev 18: 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Mayack SR, Wagers AJ . (2008). Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 112: 519–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick A, Licht JD . (1999). Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  • Nigg EA . (1996). Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol 8: 312–317.

    Article  CAS  PubMed  Google Scholar 

  • Orimo H, Shimada T . (2005). Regulation of the human tissue-nonspecific alkaline phosphatase gene expression by all-trans-retinoic acid in SaOS-2 osteosarcoma cell line. Bone 36: 866–876.

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM, Marie PJ . (2002). FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: 1446–1465.

    Article  CAS  PubMed  Google Scholar 

  • Rochette-Egly C, Adam S, Rossignol M, Egly JM, Chambon P . (1997). Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90: 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Rochette-Egly C, Plassat JL, Taneja R, Chambon P . (2000). The AF-1 and AF-2 activating domains of retinoic acid receptor-alpha (RARalpha) and their phosphorylation are differentially involved in parietal endodermal differentiation of F9 cells and retinoid-induced expression of target genes. Mol Endocrinol 14: 1398–1410.

    CAS  PubMed  Google Scholar 

  • Song LN . (1994). Effects of retinoic acid and dexamethasone on proliferation, differentiation, and glucocorticoid receptor expression in cultured human osteosarcoma cells. Oncol Res 6: 111–118.

    CAS  PubMed  Google Scholar 

  • Studzinski GP, Harrison LE . (1999). Differentiation-related changes in the cell cycle traverse. Int Rev Cytol 189: 1–58.

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS, Emerson SG . (1994). Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179: 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS, Reilly MJ, Emerson SG . (1996). Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87: 518–524.

    CAS  PubMed  Google Scholar 

  • Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, Chambon P . (1997). Phosphorylation of activation functions AF-1 and AF-2 of RAR alpha and RAR gamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO J 16: 6452–6465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassan JP, Jaquenoud M, Fry AM, Frutiger S, Hughes GJ, Nigg EA . (1995). In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J 14: 5608–5617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Kansara M . (2006). Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem 98: 757–769.

    Article  CAS  PubMed  Google Scholar 

  • Traianedes K, Ng KW, Martin TJ, Findlay DM . (1993). Cell substratum modulates responses of preosteoblasts to retinoic acid. J Cell Physiol 157: 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Alimova IN, Luo P, Jong A, Triche TJ, Wu L . (2009). Loss of CAK phosphorylation of RAR\{alpha\} mediates transcriptional control of retinoid-induced cancer cell differentiation. FASEB J (e-pub ahead of print).

  • Wang J, Barsky LW, Shum CH, Jong A, Weinberg KI, Collins SJ et al. (2002). Retinoid-induced G1 arrest and differentiation activation are associated with a switch to cyclin-dependent kinase-activating kinase hypophosphorylation of retinoic acid receptor alpha. J Biol Chem 277: 43369–43376.

    Article  CAS  PubMed  Google Scholar 

  • Wang JG, Barsky LW, Davicioni E, Weinberg KI, Triche TJ, Zhang XK et al. (2006). Retinoic acid induces leukemia cell G1 arrest and transition into differentiation by inhibiting cyclin-dependent kinase-activating kinase binding and phosphorylation of PML/RARalpha. FASEB J 20: 2142–2144.

    Article  CAS  PubMed  Google Scholar 

  • Wang XD . (2005). Alcohol, vitamin A, and cancer. Alcohol 35: 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Chen P, Shum CH, Chen C, Barsky LW, Weinberg KI et al. (2001). MAT1-modulated CAK activity regulates cell cycle G(1) exit. Mol Cell Biol 21: 260–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Yee A, Liu L, Carbonaro-Hall D, Venkatesan N, Tolo VT et al. (1994). Molecular cloning of the human CAK1 gene encoding a cyclin-dependent kinase-activating kinase. Oncogene 9: 2089–2096.

    CAS  PubMed  Google Scholar 

  • Zhang S, He Q, Peng H, Tedeschi-Blok N, Triche TJ, Wu L . (2004). MAT1-modulated cyclin-dependent kinase-activating kinase activity cross-regulates neuroblastoma cell G(1) arrest and neurite outgrowth. Cancer Res 64: 2977–2983.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XK, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G et al. (1992). Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358: 587–591.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Skoultchi AI . (2001). Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 11: 91–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the National Institutes of Health R21 CA111440 and R01 CA120512 to L Wu, and 1 UO1 CA114757-01 to TJ Triche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, P., Yang, X., Ying, M. et al. Retinoid-suppressed phosphorylation of RARα mediates the differentiation pathway of osteosarcoma cells. Oncogene 29, 2772–2783 (2010). https://doi.org/10.1038/onc.2010.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.50

Keywords

This article is cited by

Search

Quick links