Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53

Abstract

Osteosarcoma has a poor prognosis, and the poor understanding of the genetic drivers of osteosarcoma hinders further improvement in therapeutic approaches. Transcription factor forkhead box P1 (FOXP1) is a crucial modulator in skeletal development and aging. Here, we determined the role and regulatory mechanisms of FOXP1 in osteosarcoma. Higher FOXP1 expression correlated with malignancy in both osteosarcoma cell lines and clinical biopsies. FOXP1 overexpression and knockdown in osteosarcoma cell lines revealed that FOXP1 promoted proliferation, tumor sphere formation, migration and invasion, and inhibited anoikis. Mechanistically, FOXP1 acted as a repressor of P21 and RB (retinoblastoma protein) transcription, and directly interacted with the tumor suppressor p53 to inhibit its activity. Extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/JNK) signaling and c-JUN/c-FOS transcription factors were found to be upstream activators of FOXP1. Moreover, FOXP1 silencing via lentivirus or adeno-associated virus (AAV)-mediated delivery of shRNA suppressed osteosarcoma development and progression in cell-derived and patient-derived xenograft animal models. Taken together, we demonstrate that FOXP1, which is transactivated by ERK/JNK-c-JUN/c-FOS, drives osteosarcoma development by regulating the p53-P21/RB signaling cascade, suggesting that FOXP1 is a potential target for osteosarcoma therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FOXP1 expression correlated with osteosarcoma malignancy.
Fig. 2: FOXP1 overexpression mediated by lentivirus infection enhanced tumorigenic abilities of U2-OS osteosarcoma cells in vitro.
Fig. 3: Knockdown of FOXP1 in osteosarcoma cells inhibited proliferation, stemness, and metastasis properties in vitro.
Fig. 4: FOXP1 influenced p53 signaling pathway, inhibited P21 and RB expression.
Fig. 5: FOXP1 suppressed RB and P21 expression as a transcription repressor.
Fig. 6: FOXP1 interacted with p53 protein in osteosarcoma.
Fig. 7: FOXP1 expression was activated by ERK/JNK-AP-1 signaling axis.
Fig. 8: Silencing of FOXP1 mediated by adeno-associated virus infection restrained osteosarcoma growth in PDX models.

Similar content being viewed by others

References

  1. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13:480–91.

    Article  CAS  PubMed  Google Scholar 

  2. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticanc. 2018;18:39–50.

    Article  CAS  Google Scholar 

  3. Lin Y, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, et al. Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol Med. 2017;23:737–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35.

    Article  CAS  PubMed  Google Scholar 

  5. Malkin D. Germline p53 mutations and heritable cancer. Annu Rev Genet. 1994;28:443–65.

    Article  CAS  PubMed  Google Scholar 

  6. Malkin D, Li FP, Strong LC, Fraumeni JJ, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    Article  CAS  PubMed  Google Scholar 

  7. Mirabello L, Yeager M, Mai PL, Gastier-Foster JM, Gorlick R, Khanna C. et al. Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst. 2015;107:djv101.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K, Toguchida J, et al. Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer Res. 1990;50:7950.

    CAS  PubMed  Google Scholar 

  10. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Gene Dev. 2008;22:1662–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci USA. 2008;105:11851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Armesilla-Diaz A, Elvira G, Silva A. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res. 2009;315:3598–610.

    Article  CAS  PubMed  Google Scholar 

  13. Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, et al. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol. 2006;172:909–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quist T, Jin H, Zhu J, Smith-Fry K, Capecchi MR, Jones KB. The impact of osteoblastic differentiation on osteosarcomagenesis in the mouse. Oncogene. 2015;34:4278–84.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brøgger A, et al. Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA. 1985;82:6216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki MS, Kotoura Y, et al. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994;54:3042.

    CAS  PubMed  Google Scholar 

  17. Fittall MW, Mifsud W, Pillay N, Ye H, Strobl A, Verfaillie A, et al. Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun. 2018;9:2150.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang Z, Liang J, Schellander K, Wagner EF, Grigoriadis AE. c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos. Cancer Res. 1995;55:6244.

    CAS  PubMed  Google Scholar 

  19. Papachristou DJ, Batistatou A, Sykiotis GP, Varakis I, Papavassiliou AG. Activation of the JNK–AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone. 2003;32:364–71.

    Article  CAS  PubMed  Google Scholar 

  20. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci USA. 2014;111:E5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Yang D, Sun Y, Sun B, Wang G, Trent JC, et al. Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer Am Cancer Soc. 2011;117:4925–38.

    CAS  Google Scholar 

  22. Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB, et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun. 2017;8:15936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Li S, Yuan L, Tian Y, Weidenfeld J, Yang J, et al. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Gene Dev. 2010;24:1746–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development. 2012;139:2500–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng X, Wang H, Takata H, Day TJ, Willen J, Hu H. Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat Immunol. 2011;12:544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819–26.

    Article  CAS  PubMed  Google Scholar 

  27. Naudin C, Hattabi A, Michelet F, Miri-Nezhad A, Benyoucef A, Pflumio F, et al. PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells. Blood. 2017;129:2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell. 2008;134:304–16.

    Article  CAS  PubMed  Google Scholar 

  29. Usui N, Araujo DJ, Kulkarni A, Co M, Ellegood J, Harper M, et al. Foxp1 regulation of neonatal vocalizations via cortical development. Gene Dev. 2017;31:2039–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leishman E, Howard JM, Garcia GE, Miao Q, Ku AT, Dekker JD, et al. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development. 2013;140:3809–18.

    CAS  Google Scholar 

  31. Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W, et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun. 2019;10:5070.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011;147:132–46.

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127:1241–53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim J, Hwang J, Jung JH, Lee H, Lee DY, Kim S. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer. 2019;18:180.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koon HB, Ippolito GC, Banham AH, Tucker PW. FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Tar. 2007;11:955–65.

    Article  CAS  Google Scholar 

  36. Flori M, Schmid CA, Sumrall ET, Tzankov A, Law CW, Robinson MD. et al. The hematopoietic oncoprotein FOXP1 promotes tumor cell survival in diffuse large B-cell lymphoma by repressing S1PR2 signaling. Blood. 2016;127:1438–48.

    Article  CAS  PubMed  Google Scholar 

  37. Dekker JD, Park D, Shaffer AL, Kohlhammer H, Deng W, Lee B. et al. Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1. Proc Natl Acad Sci USA. 2016;113:E577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown PJ, Wong KK, Felce SL, Lyne L, Spearman H, Soilleux EJ, et al. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia. 2016;30:605–16.

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Sun J, Cui M, Zhao F, Ge C, Chen T. et al. Downregulation of FOXP1 inhibits cell proliferation in hepatocellular carcinoma by inducing G1/S phase cell cycle arrest. Int J Mol Sci. 2016;17:1501.

    Article  PubMed Central  Google Scholar 

  40. Fox SB, Brown P, Han C, Ashe S, Leek RD, Harris AL, et al. Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptor α and improved survival in primary human breast carcinomas. Clin Cancer Res. 2004;10:3521–7.

    Article  CAS  PubMed  Google Scholar 

  41. Bates GJ, Fox SB, Han C, Launchbury R, Leek RD, Harris AL, et al. Expression of the forkhead transcription factor FOXP1 is associated with that of estrogen receptor β in primary invasive breast carcinomas. Breast Cancer Res Tr. 2008;111:453–9.

    Article  CAS  Google Scholar 

  42. Sheng H, Li X, Xu Y. Knockdown of FOXP1 promotes the development of lung adenocarcinoma. Cancer Biol Ther. 2019;20:537–45.

    Article  CAS  PubMed  Google Scholar 

  43. Takayama K, Horie-Inoue K, Ikeda K, Urano T, Murakami K, Hayashizaki Y, et al. FOXP1 is an androgen-responsive transcription factor that negatively regulates androgen receptor signaling in prostate cancer cells. Biochem Bioph Res Co. 2008;374:388–93.

    Article  CAS  Google Scholar 

  44. Mohseny AB, Machado I, Cai Y, Schaefer K, Serra M, Hogendoorn PCW, et al. Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Invest. 2011;91:1195–205.

    Article  PubMed  Google Scholar 

  45. Du L, Han X, Tu B, Wang M, Qiao H, Zhang S, et al. CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis. 2018;9:714.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huurne MT, Peng T, Yi G, Van Mierlo G, Marks H, Stunnenberg HG. Critical role for P53 in regulating the cell cycle of ground state embryonic stem cells. Stem Cell Rep. 2020;14:175–83.

    Article  Google Scholar 

  47. Jochum W, Passegue E, Wagner EF. AP-1 in mouse development and tumorigenesis. Oncogene. 2001;20:2401–12.

    Article  CAS  PubMed  Google Scholar 

  48. Tao J, Jiang M, Jiang L, Salvo JS, Zeng H, Dawson B, et al. Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014;26:390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G. et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. eLife. 2019;8:e50208.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;129:1895–909.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sagaert X, de Paepe P, Libbrecht L, Vanhentenrijk V, Verhoef G, Thomas J, et al. Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:2490–7.

    Article  CAS  PubMed  Google Scholar 

  52. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott AT. T (3; 14)(p14. 1; q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19:652–8.

    Article  CAS  PubMed  Google Scholar 

  53. Mottok A, Jurinovic V, Farinha P, Rosenwald A, Leich E, Ott G. et al. FOXP1 expression is a prognostic biomarker in follicular lymphoma treated with rituximab-containing regimens. Blood. 2018;131:226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, et al. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal. 2015;8:a12.

    Article  Google Scholar 

  55. van Keimpema M, Grüneberg LJ, Mokry M, van Boxtel R, Koster J, Coffer PJ, et al. FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells. Blood. 2014;124:3431–40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hieronymus H, Iaquinta PJ, Wongvipat J, Gopalan A, Murali R, Mao N. et al. Deletion of 3p13-14 locus spanning FOXP1 to SHQ1 cooperates with PTEN loss in prostate oncogenesis. Nat Commun. 2017;8:1081.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen H, Xiao Z, Yu R, Wang Y, Xu R, Zhu X. miR-181d-5p-FOXP1 feedback loop modulates the progression of osteosarcoma. Biochem Bioph Res Co. 2018;503:1434–41.

    Article  CAS  Google Scholar 

  58. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  CAS  PubMed  Google Scholar 

  59. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  60. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  61. Coventon J. A review of the mechanism of action and clinical applications of sorafenib in advanced osteosarcoma. J Bone Oncol. 2017;8:4–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development. 2007;134:1991–2000.

    Article  CAS  PubMed  Google Scholar 

  63. Xu S, Liu P, Chen Y, Chen Y, Zhang W, Zhao H, et al. Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proc Natl Acad Sci USA. 2018;115:8799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chokas AL, Trivedi CM, Lu MM, Tucker PW, Li S, Epstein JA, et al. Foxp1/2/4-NuRD interactions regulate gene expression and epithelial injury response in the lung via regulation of interleukin-6. J Biol Chem. 2010;285:13304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spaeth JM, Hunter CS, Bonatakis L, Guo M, French CA, Slack I, et al. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia. 2015;58:1836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao H, Zhou W, Yao Z, Wan Y, Cao J, Zhang L, et al. Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Dev Biol. 2015;398:242–54.

    Article  CAS  PubMed  Google Scholar 

  67. Gascoyne DM, Spearman H, Lyne L, Puliyadi R, Perez-Alcantara M, Coulton L, et al. The forkhead transcription factor FOXP2 is required for regulation of p21WAF1/CIP1 in 143B osteosarcoma cell growth arrest. PLoS ONE. 2015;10:e128513.

    Article  Google Scholar 

  68. Yin Z, Ding H, He E, Chen J, Li M. Up-regulation of microRNA-491-5p suppresses cell proliferation and promotes apoptosis by targeting FOXP4 in human osteosarcoma. Cell Prolif. 2017;50:e12308.

    Article  Google Scholar 

  69. van Keimpema M, Gruneberg LJ, Schilder-Tol EJ, Oud ME, Beuling EA, Hensbergen PJ, et al. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica. 2017;102:573–83.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xu W, Bian Z, Fan Q, Li G, Tang T. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett. 2009;281:32–41.

    Article  CAS  PubMed  Google Scholar 

  71. Han X, Yang S, Mo H, Wang M, Zhou F, Li H, et al. Targeting of CXCR1 on osteosarcoma circulating tumor cells and precise treatment via cisplatin nanodelivery. Adv Funct Mater. 2019;29:1902246.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (81802679), the Shanghai Science and Technology Development Fund (18DZ2291200), and China Postdoctoral Science Foundation (2018M632136 and 2019T120348) to HL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Dong or Tingting Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal studies were approved by the Animal Ethics Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (HKDL No. 2018–218). All human studies were conducted with the approval of the Independent Ethics Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (No. 2018–80), after receiving written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Han, X., Yang, S. et al. FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53. Oncogene 40, 2785–2802 (2021). https://doi.org/10.1038/s41388-021-01742-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01742-4

This article is cited by

Search

Quick links