Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epigenetic regulations in hematopoietic Hox code

Abstract

Hox genes encode DNA-binding proteins that are deployed in overlapping domains along various body axes during embryonic development. This sequential activation of Hox genes in temporal and spatial mode, the Hox code, is critical for the proper positioning of segmented structures along those axes, which include the vertebrate, limbs and, also digestive and reproductive tracts. It remains unknown how Hox genes are regulated to determine the identity of hematopoietic stem cells and their derivatives, which migrate and express most Hox genes. The key questions are whether the hematopoietic system has an axis, how epigenetic mechanisms restrict expression of Hox genes to specific cell types and what role Hox genes play in leukemic transformation? Taking in account these questions, we propose a combinatorial axial model of hematopoietic Hox code to predict the positional identity of the hematopoietic cells. This model will provide new insight into epigenetic therapy in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abate-Shen C . (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2: 777–785.

    CAS  PubMed  Google Scholar 

  • Akbas GE, Song J, Taylor HS . (2004). A HOXA10 estrogen response element (ERE) is differentially regulated by 17 beta-estradiol and diethylstilbestrol (DES). J Mol Biol 340: 1013–1023.

    CAS  PubMed  Google Scholar 

  • Akin ZN, Nazarali AJ . (2005). Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25: 697–741.

    CAS  PubMed  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A et al. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711–1714.

    CAS  PubMed  Google Scholar 

  • Arderiu G, Cuevas I, Chen A, Carrio M, East L, Boudreau NJ . (2007). HoxA5 stabilizes adherens junctions via increased Akt1. Cell Adh Migr 1: 185–195.

    PubMed  PubMed Central  Google Scholar 

  • Ayton PM, Cleary ML . (2001). Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  • Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3: 89–95.

    CAS  PubMed  Google Scholar 

  • Bel-Vialar S, Itasaki N, Krumlauf R . (2002). Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129: 5103–5115.

    CAS  PubMed  Google Scholar 

  • Bullinger L, Armstrong SA . (2010). HELP for AML: methylation profiling opens new avenues. Cancer Cell 17: 1–3.

    CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    CAS  PubMed  Google Scholar 

  • Cao R, Zhang Y . (2004a). SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15: 57–67.

    CAS  PubMed  Google Scholar 

  • Cao R, Zhang Y . (2004b). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14: 155–164.

    CAS  PubMed  Google Scholar 

  • Celetti A, Barba P, Cillo C, Rotoli B, Boncinelli E, Magli MC . (1993). Characteristic patterns of HOX gene expression in different types of human leukemia. Int J Cancer 53: 237–244.

    CAS  PubMed  Google Scholar 

  • Chambeyron S, Bickmore WA . (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18: 1119–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YX, Yan J, Keeshan K, Tubbs AT, Wang H, Silva A et al. (2006). The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci USA 103: 1018–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J et al. (2003). cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425: 300–306.

    CAS  PubMed  Google Scholar 

  • Dejardin J, Cavalli G . (2004). Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. Embo J 23: 857–868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dellino GI, Schwartz YB, Farkas G, McCabe D, Elgin SC, Pirrotta V . (2004). Polycomb silencing blocks transcription initiation. Mol Cell 13: 887–893.

    CAS  PubMed  Google Scholar 

  • Deschamps J, van Nes J . (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132: 2931–2942.

    CAS  PubMed  Google Scholar 

  • Dillon SC, Zhang X, Trievel RC, Cheng X . (2005). The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6: 227.

    PubMed  PubMed Central  Google Scholar 

  • Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. (1999). The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. Embo J 18: 3564–3574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duboule D, Deschamps J . (2004). Colinearity loops out. Dev Cell 6: 738–740.

    CAS  PubMed  Google Scholar 

  • Duboule D, Morata G . (1994). Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 10: 358–364.

    CAS  PubMed  Google Scholar 

  • Erfurth FE, Popovic R, Grembecka J, Cierpicki T, Theisler C, Xia ZB et al. (2008). MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc Natl Acad Sci USA 105: 7517–7522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ . (2004). An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 14: 2063–2069.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2006). The necessity of a human epigenome project. Carcinogenesis 27: 1121–1125.

    CAS  PubMed  Google Scholar 

  • Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113: 2375–2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faiella A, Zappavigna V, Mavilio F, Boncinelli E . (1994). Inhibition of retinoic acid-induced activation of 3′ human HOXB genes by antisense oligonucleotides affects sequential activation of genes located upstream in the four HOX clusters. Proc Natl Acad Sci USA 91: 5335–5339.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenfeld G, Burgess-Beusse B, Farrell C, Gaszner M, Ghirlando R, Huang S et al. (2004). Chromatin boundaries and chromatin domains. Cold Spring Harb Symp Quant Biol 69: 245–250.

    CAS  PubMed  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL . (2004). Chromatin compaction by a polycomb group protein complex. Science 306: 1574–1577.

    CAS  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T . (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24: 88–91.

    CAS  PubMed  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R, Kouzarides T . (2003a). The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31: 2305–2312.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T . (2003b). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035–4040.

    CAS  PubMed  Google Scholar 

  • Garcia-Fernandez J . (2005). Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94: 145–152.

    CAS  PubMed  Google Scholar 

  • Gaufo GO, Thomas KR, Capecchi MR . (2003). Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130: 5191–5201.

    CAS  PubMed  Google Scholar 

  • Gaunt SJ, Cockley A, Drage D . (2004). Additional enhancer copies, with intact cdx binding sites, anteriorize Hoxa-7/lacZ expression in mouse embryos: evidence in keeping with an instructional cdx gradient. Int J Dev Biol 48: 613–622.

    CAS  PubMed  Google Scholar 

  • Gaunt SJ, Drage D, Trubshaw RC . (2008). Increased Cdx protein dose effects upon axial patterning in transgenic lines of mice. Development 135: 2511–2520.

    CAS  PubMed  Google Scholar 

  • Geisen MJ, Di Meglio T, Pasqualetti M, Ducret S, Brunet JF, Chedotal A et al. (2008). Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol 6: e142.

    PubMed  PubMed Central  Google Scholar 

  • Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR . (2005). The pathophysiology of HOX genes and their role in cancer. J Pathol 205: 154–171.

    CAS  PubMed  Google Scholar 

  • Gruss P, Kessel M . (1991). Axial specification in higher vertebrates. Curr Opin Genet Dev 1: 204–210.

    CAS  PubMed  Google Scholar 

  • Guo Y, Lubbert M, Engelhardt M . (2003). CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells 21: 15–20.

    CAS  PubMed  Google Scholar 

  • Gutman A, Gilthorpe J, Rigby PW . (1994). Multiple positive and negative regulatory elements in the promoter of the mouse homeobox gene Hoxb-4. Mol Cell Biol 14: 8143–8154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazzalin CA, Mahadevan LC . (2005). Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun. PLoS Biol 3: e393.

    PubMed  PubMed Central  Google Scholar 

  • Hess JL . (2004). MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 10: 500–507.

    CAS  PubMed  Google Scholar 

  • Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC et al. (2004). Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13: 587–597.

    CAS  PubMed  Google Scholar 

  • Huynh H, Iizuka S, Kaba M, Kirak O, Zheng J, Lodish HF et al. (2008). Insulin-like growth factor-binding protein 2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 26: 1628–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB et al. (2004). Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112: 308–315.

    CAS  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE . (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560.

    CAS  PubMed  Google Scholar 

  • Johnson JJ, Chen W, Hudson W, Yao Q, Taylor M, Rabbitts TH et al. (2003). Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood 101: 3229–3235.

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    CAS  PubMed  Google Scholar 

  • Kessel M, Gruss P . (1991). Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104.

    CAS  PubMed  Google Scholar 

  • Kmita M, Duboule D . (2003). Organizing axes in time and space; 25 years of colinear tinkering. Science 301: 331–333.

    CAS  PubMed  Google Scholar 

  • Kmita M, Kondo T, Duboule D . (2000). Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nat Genet 26: 451–454.

    CAS  PubMed  Google Scholar 

  • Knittel T, Kessel M, Kim MH, Gruss P . (1995). A conserved enhancer of the human and murine Hoxa-7 gene specifies the anterior boundary of expression during embryonal development. Development 121: 1077–1088.

    CAS  PubMed  Google Scholar 

  • Kobrossy L, Rastegar M, Featherstone M . (2006). Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem 281: 25926–25939.

    CAS  PubMed  Google Scholar 

  • Kondo T, Zakany J, Duboule D . (1998). Control of colinearity in AbdB genes of the mouse HoxD complex. Mol Cell 1: 289–300.

    CAS  PubMed  Google Scholar 

  • Kouskouti A, Talianidis I . (2005). Histone modifications defining active genes persist after transcriptional and mitotic inactivation. Embo J 24: 347–357.

    CAS  PubMed  Google Scholar 

  • Kumar AR, Hudson WA, Chen W, Nishiuchi R, Yao Q, Kersey JH . (2004). Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood 103: 1823–1828.

    CAS  PubMed  Google Scholar 

  • Kwan CT, Tsang SL, Krumlauf R, Sham MH . (2001). Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression. Dev Biol 232: 176–190.

    CAS  PubMed  Google Scholar 

  • Lachner M, Jenuwein T . (2002). The many faces of histone lysine methylation. Curr Opin Cell Biol 14: 286–298.

    CAS  PubMed  Google Scholar 

  • Lawrence HJ, Sauvageau G, Humphries RK, Largman C . (1996). The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14: 281–291.

    CAS  PubMed  Google Scholar 

  • Lee JH, Skalnik DG . (2005). CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280: 41725–41731.

    CAS  PubMed  Google Scholar 

  • Lehoczky JA, Williams ME, Innis JW . (2004). Conserved expression domains for genes upstream and within the HoxA and HoxD clusters suggests a long-range enhancer existed before cluster duplication. Evol Dev 6: 423–430.

    CAS  PubMed  Google Scholar 

  • Leroy P, Berto F, Bourget I, Rossi B . (2004). Down-regulation of Hox A7 is required for cell adhesion and migration on fibronectin during early HL-60 monocytic differentiation. J Leukoc Biol 75: 680–688.

    CAS  PubMed  Google Scholar 

  • Linggi BE, Brandt SJ, Sun ZW, Hiebert SW . (2005). Translating the histone code into leukemia. J Cell Biochem 96: 938–950.

    CAS  PubMed  Google Scholar 

  • Lohnes D . (2003). The Cdx1 homeodomain protein: an integrator of posterior signaling in the mouse. Bioessays 25: 971–980.

    CAS  PubMed  Google Scholar 

  • Look AT . (1997). Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  • Mace KA, Hansen SL, Myers C, Young DM, Boudreau N . (2005). HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J Cell Sci 118: 2567–2577.

    CAS  PubMed  Google Scholar 

  • Magli MC, Largman C, Lawrence HJ . (1997). Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 173: 168–177.

    CAS  PubMed  Google Scholar 

  • Manley NR, Capecchi MR . (1997). Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev Biol 192: 274–288.

    CAS  PubMed  Google Scholar 

  • Manley NR, Capecchi MR . (1998). Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195: 1–15.

    CAS  PubMed  Google Scholar 

  • Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM et al. (2001). Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 128: 3595–3607.

    CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y . (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6: 838–849.

    CAS  PubMed  Google Scholar 

  • Mathieu O, Probst AV, Paszkowski J . (2005). Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. Embo J 24: 2783–2791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maves L, Kimmel CB . (2005). Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev Biol 285: 593–605.

    CAS  PubMed  Google Scholar 

  • Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. (2002). MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  • Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. (2005). Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 102: 749–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monge I, Kondo T, Duboule D . (2003). An enhancer-titration effect induces digit-specific regulatory alleles of the HoxD cluster. Dev Biol 256: 212–220.

    CAS  PubMed  Google Scholar 

  • Morgan R, Whiting K . (2008). Differential expression of HOX genes upon activation of leukocyte sub-populations. Int J Hematol 87: 246–249.

    PubMed  PubMed Central  Google Scholar 

  • Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B et al. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.

    CAS  PubMed  Google Scholar 

  • Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119–1128.

    CAS  PubMed  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K . (2003). Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11: 709–719.

    CAS  PubMed  Google Scholar 

  • Nowling T, Zhou W, Krieger KE, Larochelle C, Nguyen-Huu MC, Jeannotte L et al. (1999). Hoxa5 gene regulation: a gradient of binding activity to a brachial spinal cord element. Dev Biol 208: 134–146.

    CAS  PubMed  Google Scholar 

  • Oosterveen T, Niederreither K, Dolle P, Chambon P, Meijlink F, Deschamps J . (2003a). Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. Embo J 22: 262–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oosterveen T, van Vliet P, Deschamps J, Meijlink F . (2003b). The direct context of a hox retinoic acid response element is crucial for its activity. J Biol Chem 278: 24103–24107.

    CAS  PubMed  Google Scholar 

  • Owens BM, Hawley RG . (2002). HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 20: 364–379.

    CAS  PubMed  Google Scholar 

  • Pineault N, Helgason CD, Lawrence HJ, Humphries RK . (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30: 49–57.

    CAS  PubMed  Google Scholar 

  • Popovic R, Zeleznik-Le NJ . (2005). MLL: how complex does it get? J Cell Biochem 95: 234–242.

    CAS  PubMed  Google Scholar 

  • Popperl H, Featherstone MS . (1992). An autoregulatory element of the murine Hox-4.2 gene. Embo J 11: 3673–3680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puschel AW, Balling R, Gruss P . (1991). Separate elements cause lineage restriction and specify boundaries of Hox-1.1 expression. Development 112: 279–287.

    CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R . (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443.

    CAS  PubMed  Google Scholar 

  • Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY . (2006). Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet 2: e119.

    PubMed  PubMed Central  Google Scholar 

  • Roelen BA, de Graaff W, Forlani S, Deschamps J . (2002). Hox cluster polarity in early transcriptional availability: a high order regulatory level of clustered Hox genes in the mouse. Mech Dev 119: 81–90.

    CAS  PubMed  Google Scholar 

  • Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P, Kingston RE . (2001). A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412: 655–660.

    CAS  PubMed  Google Scholar 

  • Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. (1994). Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 91: 12223–12227.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W et al. (1999). Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46.

    CAS  PubMed  Google Scholar 

  • Sharpe J, Nonchev S, Gould A, Whiting J, Krumlauf R . (1998). Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. Embo J 17: 1788–1798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD . (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92: 1237–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen PH, Chen CS, Smith FO, Arthur DC, Domer PH, Bernstein ID et al. (1994). Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J Clin Invest 93: 429–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spirov AV, Borovsky M, Spirova OA . (2002). HOX Pro DB: the functional genomics of hox ensembles. Nucleic Acids Res 30: 351–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spitz F, Gonzalez F, Duboule D . (2003). A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113: 405–417.

    CAS  PubMed  Google Scholar 

  • Suemori H, Noguchi S . (2000). Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev Biol 220: 333–342.

    CAS  PubMed  Google Scholar 

  • Tabaries S, Lapointe J, Besch T, Carter M, Woollard J, Tuggle CK et al. (2005). Cdx protein interaction with Hoxa5 regulatory sequences contributes to Hoxa5 regional expression along the axial skeleton. Mol Cell Biol 25: 1389–1401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJ, Plum J et al. (2003). Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 17: 1157–1163.

    CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU . (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283.

    CAS  PubMed  Google Scholar 

  • Terranova R, Agherbi H, Boned A, Meresse S, Djabali M . (2006). Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA 103: 6629–6634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J et al. (2010). MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17: 148–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BM . (2000). Histone acetylation and an epigenetic code. Bioessays 22: 836–845.

    CAS  PubMed  Google Scholar 

  • Vasanthi D, Mishra RK . (2008). Epigenetic regulation of genes during development: a conserved theme from flies to mammals. J Genet Genomics 35: 413–429.

    CAS  PubMed  Google Scholar 

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.

    CAS  PubMed  Google Scholar 

  • Wang KC, Helms JA, Chang HY . (2009). Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19: 268–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS . (2004). Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14: 637–646.

    CAS  PubMed  Google Scholar 

  • Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. (2008). Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13: 483–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  • West AG, Gaszner M, Felsenfeld G . (2002). Insulators: many functions, many mechanisms. Genes Dev 16: 271–288.

    PubMed  Google Scholar 

  • Yan J, Chen YX, Desmond A, Silva A, Yang Y, Wang H et al. (2006a). Cdx4 and menin co-regulate hoxa9 expression in hematopoietic cells. PLoS ONE 1: e47.

    PubMed  PubMed Central  Google Scholar 

  • Yan J, Xu L, Crawford G, Wang Z, Burgess SM . (2006b). The forkhead transcription factor foxi1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure. Mol Cell Biol 26: 155–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML . (2010). A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17: 198–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML . (2005). The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123: 207–218.

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639–5649.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ . (1998). MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 95: 10632–10636.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaret KS, Watts J, Xu J, Wandzioch E, Smale ST, Sekiya T . (2008). Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. Cold Spring Harb Symp Quant Biol 73: 119–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Berger SL . (2004). Good fences make good neighbors: barrier elements and genomic regulation. Mol Cell 16: 500–502.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose work has not been cited here owing to the stringent limit of space and our knowledge. We thank Shivani Sethi’s assistance in editing the manuscript. This work was supported by the International Cooperation Initiative Program of Shanghai Ocean University (A2302100002) and the Shanghai Leading Academic Discipline Project (S30701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Hua, X. & Yan, J. Epigenetic regulations in hematopoietic Hox code. Oncogene 30, 379–388 (2011). https://doi.org/10.1038/onc.2010.484

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.484

Keywords

This article is cited by

Search

Quick links