Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induced G1 cell-cycle arrest controls replication-dependent histone mRNA 3′ end processing through p21, NPAT and CDK9

Abstract

Proper cell cycle-dependent expression of replication-dependent histones is essential for packaging of DNA into chromatin during replication. We previously showed that cyclin-dependent kinase-9 (CDK9) controls histone H2B monoubiquitination (H2Bub1) to direct the recruitment of specific mRNA 3′ end processing proteins to replication-dependent histone genes and promote proper pre-mRNA 3′ end processing. We now show that p53 decreases the expression of the histone-specific transcriptional regulator Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) by inducing a G1 cell-cycle arrest, thereby affecting E2F-dependent transcription of the NPAT gene. Furthermore, NPAT is essential for histone mRNA 3′ end processing and recruits CDK9 to replication-dependent histone genes. Reduced NPAT expression following p53 activation or small interfering RNA knockdown decreases CDK9 recruitment and replication-dependent histone gene transcription but increases the polyadenylation of remaining histone mRNAs. Thus, we present evidence that the induction of a G1 cell-cycle arrest (for example, following p53 accumulation) alters histone mRNA 3′ end processing and uncover the first mechanism of a regulated switch in the mode of pre-mRNA 3′ end processing during a normal cellular process, which may be altered during tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abba MC, Hu Y, Sun H, Drake JA, Gaddis S, Baggerly K et al. (2005). Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics 6: 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT . (2005). Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 65: 1918–1924.

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Choi BY, Cho YY, Mizuno H, Kang BS, Bode AM et al. (2005). Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res 65: 5818–5827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collart D, Ramsey-Ewing A, Bortell R, Lian J, Stein J, Stein G . (1991). Isolation and characterization of a cDNA from a human histone H2B gene which is reciprocally expressed in relation to replication-dependent H2B histone genes during HL60 cell differentiation. Biochemistry 30: 1610–1617.

    Article  CAS  PubMed  Google Scholar 

  • DeRan M, Pulvino M, Greene E, Su C, Zhao J . (2008). Transcriptional activation of histone genes requires NPAT-dependent recruitment of TRRAP-Tip60 complex to histone promoters during the G1/S phase transition. Mol Cell Biol 28: 435–447.

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Bracken AP, Burkard K, Pasini D, Classon M, Attwooll C et al. (2003). NPAT expression is regulated by E2F and is essential for cell cycle progression. Mol Cell Biol 23: 2821–2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB et al. (2007). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131: 901–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen SA, Subramaniam M, Monroe DG, Janknecht R, Spelsberg TC . (2002). Modulation of transforming growth factor beta (TGFbeta)/Smad transcriptional responses through targeted degradation of TGFbeta-inducible early gene-1 by human seven in absentia homologue. J Biol Chem 277: 30754–30759.

    Article  CAS  PubMed  Google Scholar 

  • Kirsh AL, Groudine M, Challoner PB . (1989). Polyadenylation and U7 snRNP-mediated cleavage: alternative modes of RNA 3′ processing in two avian histone H1 genes. Genes Dev 3: 2172–2179.

    Article  CAS  PubMed  Google Scholar 

  • Kranz D, Dobbelstein M . (2006). Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 66: 10274–10280.

    Article  CAS  PubMed  Google Scholar 

  • Kranz D, Dohmesen C, Dobbelstein M . (2008). BRCA1 and Tip60 determine the cellular response to ultraviolet irradiation through distinct pathways. J Cell Biol 182: 197–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonné R et al. (2006). Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 17: 3221–3231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr K, Moritz C, Contente A, Dobbelstein M . (2003). p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278: 32507–32516.

    Article  PubMed  Google Scholar 

  • Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD et al. (2000). Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14: 2298–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C et al. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131: 887–900.

    Article  CAS  PubMed  Google Scholar 

  • Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA . (2007). Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer 43: 415–432.

    Article  CAS  PubMed  Google Scholar 

  • Marzluff WF, Wagner EJ, Duronio RJ . (2008). Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9: 843–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita T, Yung TM, Yamamoto J, Tsuboi Y, Tanabe H, Tanaka K et al. (2007). NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol Cell 26: 349–365.

    Article  CAS  PubMed  Google Scholar 

  • Pirngruber J, Shchebet A, Johnsen SA . (2009a). Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing. Cell Cycle 8: 3636–3642.

    Article  CAS  PubMed  Google Scholar 

  • Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman RD et al. (2009b). CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3′ end processing. EMBO Rep 10: 894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappold I, Iwabuchi K, Date T, Chen J . (2001). Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153: 613–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintigny Y, Delacôte F, Varès G, Petitot F, Lambert S, Averbeck D et al. (2001). Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20: 3861–3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S, Rossow KL, Grande JP, Janknecht R . (2007). Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res 67: 7572–7578.

    Article  CAS  PubMed  Google Scholar 

  • Simone C, Bagella L, Bellan C, Giordano A . (2002). Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene 21: 4158–4165.

    Article  CAS  PubMed  Google Scholar 

  • Sims III RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P et al. (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28: 665–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Gao G, Schneider S, Helt C, Weiss C, O'Reilly MA et al. (2004). DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway. EMBO J 23: 1133–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vairo G, Livingston DM, Ginsberg D . (1995). Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev 9: 869–881.

    Article  CAS  PubMed  Google Scholar 

  • Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF . (2007). A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 28: 692–699.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H et al. (2006). Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22: 383–394.

    Article  PubMed  Google Scholar 

  • Wei Y, Jin J, Harper JW . (2003). The cyclin E/Cdk2 substrate and Cajal body component p220(NPAT) activates histone transcription through a novel LisH-like domain. Mol Cell Biol 23: 3669–3680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Yang X, Lee TL, Friedman J, Tang J, Van Waes C et al. (2007). Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol 8: R78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye X, Wei Y, Nalepa G, Harper JW . (2003). The cyclin E/Cdk2 substrate p220(NPAT) is required for S-phase entry, histone gene expression, and Cajal body maintenance in human somatic cells. Mol Cell Biol 23: 8586–8600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Langerød A, Ji Y, Nowels KW, Nesland JM, Tibshirani R et al. (2004). Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15: 2523–2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Dynlacht B, Imai T, Hori T, Harlow E . (1998). Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry. Genes Dev 12: 456–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA et al. (2000). NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 14: 2283–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • zur Hausen H, de Villiers EM . (1994). Human papillomaviruses. Annu Rev Microbiol 48: 427–447.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J Zhao for graciously providing the NPAT antibody and for helpful advice; O Karpiuk, T Prenzel and A Shchebet for suggestions, discussions and technical help; S Emmert for advice and enabling us to test some interesting medically relevant hypotheses; and M Dobbelstein for advice and extensive scientific discussions regarding the p53/RB/E2F axis. JP was supported by an Excellence Fellowship from the Göttingen Graduate School for Neurosciences and Molecular Biosciences (GGNB). This work was supported by grants from the Forschungsförderungsprogramm at the University of Göttingen Medical Center and the Deutsche Forschungsgemeinschaft (JO 815/1) to SAJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Johnsen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirngruber, J., Johnsen, S. Induced G1 cell-cycle arrest controls replication-dependent histone mRNA 3′ end processing through p21, NPAT and CDK9. Oncogene 29, 2853–2863 (2010). https://doi.org/10.1038/onc.2010.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.42

Keywords

This article is cited by

Search

Quick links