Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The multifunctional protein PACS-1 is required for HDAC2- and HDAC3-dependent chromatin maturation and genomic stability

Abstract

Phosphofurin acidic cluster sorting protein-1 (PACS-1) is a multifunctional membrane traffic regulator that plays important roles in organ homeostasis and disease. In this study, we elucidate a novel nuclear function for PACS-1 in maintaining chromosomal integrity. PACS-1 progressively accumulates in the nucleus during cell cycle progression, where it interacts with class I histone deacetylases 2 and 3 (HDAC2 and HDAC3) to regulate chromatin dynamics by maintaining the acetylation status of histones. PACS-1 knockdown results in the proteasome-mediated degradation of HDAC2 and HDAC3, compromised chromatin maturation, as indicated by elevated levels of histones H3K9 and H4K16 acetylation, and, consequently, increased replication stress-induced DNA damage and genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PACS-1 nuclear accumulation increases during cell cycle progression and its deficiency induces replication stress and cell death.
Fig. 2: PACS-1 regulates replication progression during normal and perturbed conditions and its deficiency leads to genomic instability.
Fig. 3: PACS-1 localizes to chromatin and regulates the stability of HDAC2 and HDAC3 proteins.
Fig. 4: PACS-1 binds to HDAC2 and HDAC3 proteins and regulates their stabilities.
Fig. 5: FBR region of PACS-1 is essential for its interaction with HDACs.
Fig. 6: PACS-1 interactions with HDACs are distinct from its cytosolic TGN functions.
Fig. 7: PACS-1 promotes malignant behavior of cancer cells and a poor prognostic marker.

Similar content being viewed by others

References

  1. Gilbert N, Gilchrist S, Bickmore WA. Chromatin organization in the mammalian nucleus. Int Rev Cytol. 2005;242:283–336.

    Article  CAS  PubMed  Google Scholar 

  2. Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004;14:R546–51.

    Article  CAS  PubMed  Google Scholar 

  3. Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes. 2013;4:1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lande-Diner L, Zhang J, Cedar H. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol Cell. 2009;34:767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA. 1995;92:1237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:a018713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 2011;25:1320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stengel KR, Hiebert SW. Class I HDACs affect DNA replication, repair, and chromatin structure: implications for cancer therapy. Antioxid Redox Signal. 2015;23:51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun Z-W, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF, Wells CE, et al. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Invest. 2013;123:3112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wells CE, Bhaskara S, Stengel KR, Zhao Y, Sirbu B, Chagot B, et al. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. PloS One. 2013;8:e68915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhaskara S, Jacques V, Rusche JR, Olson EN, Cairns BR, Chandrasekharan MB. Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics Chromatin. 2013;6:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.

    Article  CAS  PubMed  Google Scholar 

  14. De Souza C, Chatterji BP. HDAC inhibitors as novel anti-cancer therapeutics. Recent Pat Anticancer Drug Disco. 2015;10:145–62.

    Article  CAS  Google Scholar 

  15. Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T. Caught in the act: protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. J Cell Sci. 2017;130:1865–76.

  16. Wan L, Molloy SS, Thomas L, Liu G, Xiang Y, Rybak SL, et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell. 1998;94:205–16.

    Article  CAS  PubMed  Google Scholar 

  17. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell. 2002;111:853–66.

    Article  CAS  PubMed  Google Scholar 

  18. Crump CM, Hung C-H, Thomas L, Wan L, Thomas G. Role of PACS-1 in trafficking of human cytomegalovirus glycoprotein B and virus production. J Virol. 2003;77:11105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinners I, Wendler F, Fei H, Thomas L, Thomas G, Tooze SA. AP-1 recruitment to VAMP4 is modulated by phosphorylation-dependent binding of PACS-1. EMBO Rep. 2003;4:1182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jenkins PM, Zhang L, Thomas G, Martens JR. PACS-1 mediates phosphorylation-dependent ciliary trafficking of the cyclic-nucleotide-gated channel in olfactory sensory neurons. J Neurosci J Soc Neurosci. 2009;29:10541–51.

    Article  CAS  Google Scholar 

  21. Piguet V, Wan L, Borel C, Mangasarian A, Demaurex N, Thomas G, et al. HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes. Nat Cell Biol. 2000;2:163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, et al. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem. 2007;282:32956–64.

    Article  CAS  PubMed  Google Scholar 

  23. Scott GK, Gu F, Crump CM, Thomas L, Wan L, Xiang Y, et al. The phosphorylation state of an autoregulatory domain controls PACS-1-directed protein traffic. EMBO J. 2003;22:6234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendonca MS, Farrington DL, Mayhugh BM, Qin Y, Temples T, Comerford K, et al. Homozygous deletions within the 11q13 cervical cancer tumor-suppressor locus in radiation-induced, neoplastically transformed human hybrid cells. Genes Chromosomes Cancer. 2004;39:277–87.

    Article  CAS  PubMed  Google Scholar 

  25. Srivatsan ES, Bengtsson U, Manickam P, Benyamini P, Chandrasekharappa SC, Sun C, et al. Interstitial deletion of 11q13 sequences in HeLa cells. Genes Chromosomes Cancer. 2000;29:157–65.

    Article  CAS  PubMed  Google Scholar 

  26. Srivatsan ES, Chakrabarti R, Zainabadi K, Pack SD, Benyamini P, Mendonca MS, et al. Localization of deletion to a 300 Kb interval of chromosome 11q13 in cervical cancer. Oncogene. 2002;21:5631–42.

    Article  CAS  PubMed  Google Scholar 

  27. Zainabadi K, Jain AV, Donovan FX, Elashoff D, Rao NP, Murty VV, et al. One in four individuals of African-American ancestry harbors a 5.5kb deletion at chromosome 11q13.1. Genomics. 2014;103:276–87.

    Article  CAS  PubMed  Google Scholar 

  28. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6:789–802.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scott GK, Fei H, Thomas L, Medigeshi GR, Thomas G. A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J. 2006;25:4423–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crump CM, Xiang Y, Thomas L, Gu F, Austin C, Tooze SA, et al. PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J. 2001;20:2191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stern D, Cho MT, Chikarmane R, Willaert R, Retterer K, Kendall F, et al. Association of the missense variant p.Arg203Trp in PACS1 as a cause of intellectual disability and seizures. Clin Genet. 2017;92:221–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15:276–89.

    Article  CAS  PubMed  Google Scholar 

  34. Khurana S, Oberdoerffer P. Replication stress: a lifetime of epigenetic change. Genes. 2015;6:858–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hayakawa T, Nakayama J. Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol. 2011. https://doi.org/10.1155/2011/129383.

  36. Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18:436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331:1315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hagelkruys A, Lagger S, Krahmer J, Leopoldi A, Artaker M, Pusch O, et al. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Dev Camb Engl. 2014;141:604–16.

    CAS  Google Scholar 

  39. Johnson CA, White DA, Lavender JS, O’Neill LP, Turner BM. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J Biol Chem. 2002;277:9590–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ma P, Schultz RM. Histone Deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLoS Genet. 2013;9. https://doi.org/10.1371/journal.pgen.1003377.

  41. Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 2011;25:2480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wagner FF, Zhang Y-L, Fass DM, Joseph N, Gale JP, Weïwer M, et al. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem Sci. 2015;6:804–15.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Wharton W, Yuan Z, Tsai S-C, Olashaw N, Seto E. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol. 2004;24:5106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A, et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res. 2010;70:4470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998;17:7151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Atkins KM, Thomas LL, Barroso-González J, Thomas L, Auclair S, Yin J, et al. The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest. Cell Rep. 2014;8:1545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Godman CA, Joshi R, Tierney BR, Greenspan E, Rasmussen TP, Wang H-W, et al. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol Ther. 2008;7:1570–80.

    Article  CAS  PubMed  Google Scholar 

  48. Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, et al. Role for histone deacetylase 1 in human tumor cell proliferation. Mol Cell Biol. 2007;27:4784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoon H-G, Chan DW, Huang Z-Q, Li J, Fondell JD, Qin J, et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 2003;22:1336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tripathi K, Mani C, Barnett R, Nalluri S, Bachaboina L, Rocconi RP, et al. Gli1 protein regulates the S-phase checkpoint in tumor cells via bid protein, and its inhibition sensitizes to DNA topoisomerase 1 inhibitors. J Biol Chem. 2014;289:31513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clark DW, Tripathi K, Dorsman JC, Palle K. FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation. Oncotarget. 2015;6:28816–32.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tripathi K, Hussein UK, Anupalli R, Barnett R, Bachaboina L, Scalici J, et al. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation. Oncotarget. 2015;6:5237–52.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tripathi K, Mani C, Clark DW, Palle K. Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery. Oncotarget. 2016;7:12537–53.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Steve McClellan, Mitchell Cancer Institute for flow cytometry. This work is supported by grants from Abraham Mitchell Cancer Research Scholar Endowment grant, and partly by NIH grants R01GM098956 and R01CA219187 to KP, the NIH grants DK114855 and DK112844 to GT, the NIH grant R01GM108648 and DOD BRCP Breakthrough Award BC151728 to AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komaraiah Palle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, C., Tripathi, K., Luan, S. et al. The multifunctional protein PACS-1 is required for HDAC2- and HDAC3-dependent chromatin maturation and genomic stability. Oncogene 39, 2583–2596 (2020). https://doi.org/10.1038/s41388-020-1167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1167-x

This article is cited by

Search

Quick links