Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Naive pluripotency is associated with global DNA hypomethylation

This article has been updated

Abstract

Naive pluripotent embryonic stem cells (ESCs) and embryonic germ cells (EGCs) are derived from the preimplantation epiblast and primordial germ cells (PGCs), respectively. We investigated whether differences exist between ESCs and EGCs, in view of their distinct developmental origins. PGCs are programmed to undergo global DNA demethylation; however, we find that EGCs and ESCs exhibit equivalent global DNA methylation levels. Inhibition of MEK and Gsk3b by 2i conditions leads to pronounced reduction in DNA methylation in both cell types. This is driven by Prdm14 and is associated with downregulation of Dnmt3a and Dnmt3b. However, genomic imprints are maintained in 2i, and we report derivation of EGCs with intact genomic imprints. Collectively, our findings establish that culture in 2i instills a naive pluripotent state with a distinctive epigenetic configuration that parallels molecular features observed in both the preimplantation epiblast and nascent PGCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Culture environment defines the transcriptional profile of pluripotent stem cells.
Figure 2: Global DNA hypomethylation in 2i.
Figure 3: Characteristics of DNA methylation changes between culture conditions.
Figure 4: Prdm14 regulates DNA methylation in pluripotent stem cells.
Figure 5: Imprinted DMR methylation status of ESC and EGC lines.
Figure 6: Naive pluripotency is characterized by DNA hypomethylation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 24 February 2013

    In the version of this article initially published online, a bar connecting the two central data sets in Figure 3e was inadvertently included. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Gardner, R.L. & Beddington, R.S. Multi-lineage 'stem' cells in the mammalian embryo. J. Cell Sci. Suppl. 10, 11–27 (1988).

    CAS  PubMed  Google Scholar 

  2. Nichols, J. & Smith, A. Pluripotency in the embryo and in culture. Cold Spring Harb. Perspect. Biol. 4, a008128 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  PubMed  Google Scholar 

  4. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brook, F.A. & Gardner, R.L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA 94, 5709–5712 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gardner, R.L. & Rossant, J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J. Embryol. Exp. Morphol. 52, 141–152 (1979).

    CAS  PubMed  Google Scholar 

  7. Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    CAS  PubMed  Google Scholar 

  8. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    CAS  PubMed  Google Scholar 

  9. Rossant, J., Gardner, R.L. & Alexandre, H.L. Investigation of the potency of cells from the postimplantation mouse embryo by blastocyst injection: a preliminary report. J. Embryol. Exp. Morphol. 48, 239–247 (1978).

    CAS  PubMed  Google Scholar 

  10. Brons, I.G.M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    CAS  PubMed  Google Scholar 

  11. Tesar, P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    CAS  PubMed  Google Scholar 

  12. Osorno, R. et al. The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development 139, 2288–2298 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamanaka, S. & Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsui, Y., Zsebo, K. & Hogan, B.L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    CAS  PubMed  Google Scholar 

  15. Resnick, J.L., Bixler, L.S., Cheng, L. & Donovan, P.J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992).

    CAS  PubMed  Google Scholar 

  16. Stewart, C.L., Gadi, I. & Bhatt, H. Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628 (1994).

    CAS  PubMed  Google Scholar 

  17. Labosky, P.A., Barlow, D.P. & Hogan, B.L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197–3204 (1994).

    CAS  PubMed  Google Scholar 

  18. Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008).

    CAS  PubMed  Google Scholar 

  19. Hajkova, P. et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329, 78–82 (2010).

    CAS  PubMed  Google Scholar 

  20. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    CAS  PubMed  Google Scholar 

  21. Tada, T. et al. Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551–561 (1998).

    CAS  PubMed  Google Scholar 

  22. Shovlin, T.C., Durcova-Hills, G., Surani, A. & Mclaren, A. Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev. Biol. 313, 674–681 (2008).

    CAS  PubMed  Google Scholar 

  23. Tada, M., Tada, T., Lefebvre, L., Barton, S.C. & Surani, M.A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leitch, H.G. et al. Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 137, 2279–2287 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hajkova, P. Epigenetic reprogramming—taking a lesson from the embryo. Curr. Opin. Cell Biol. 22, 342–350 (2010).

    CAS  PubMed  Google Scholar 

  28. Hutnick, L.K., Huang, X., Loo, T.-C., Ma, Z. & Fan, G. Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism. J. Biol. Chem. 285, 21082–21091 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karimi, M.M. et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8, 676–687 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hackett, J.A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science doi:10.1126/science.1229277 (2012).

  31. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    CAS  PubMed  Google Scholar 

  34. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    CAS  PubMed  Google Scholar 

  35. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  36. Chen, T., Ueda, Y., Dodge, J.E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell Biol. 23, 5594–5605 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackson, M. et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell Biol. 24, 8862–8871 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814 (2006).

    CAS  PubMed  Google Scholar 

  39. Ma, Z., Swigut, T., Valouev, A., Rada-Iglesias, A. & Wysocka, J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat. Struct. Mol. Biol. 18, 120–127 (2011).

    CAS  PubMed  Google Scholar 

  40. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    CAS  PubMed  Google Scholar 

  41. Jones, P.A. & Liang, G. Rethinking how DNA methylation patterns are maintained. Nat. Rev. Genet. 10, 805–811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirasawa, R. et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607–1616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hirasawa, R. & Sasaki, H. Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expr. Patterns 9, 27–30 (2009).

    CAS  PubMed  Google Scholar 

  44. Borgel, J. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet. 42, 1093–1100 (2010).

    CAS  PubMed  Google Scholar 

  45. Smith, Z.D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamaji, M. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–1022 (2008).

    CAS  PubMed  Google Scholar 

  48. Dean, W. et al. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125, 2273–2282 (1998).

    CAS  PubMed  Google Scholar 

  49. Humpherys, D. et al. Epigenetic instability in ES cells and cloned mice. Science 293, 95–97 (2001).

    CAS  PubMed  Google Scholar 

  50. Ying, Q.-L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    CAS  PubMed  Google Scholar 

  51. Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell 6, 468–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684 (1999).

    CAS  PubMed  Google Scholar 

  54. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    CAS  PubMed  Google Scholar 

  55. Smyth, G.K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds. Gentleman, R., Carey, V., Dudoit, S., Irizarry, R. & Huber, W.) 397–420 (Springer, 2005).

  56. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    PubMed  Google Scholar 

  57. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Smith, Surani and Hajkova labs for stimulating discussions and C. Mulas for comments on the manuscript. We are also grateful to B. Snijders from the Medical Research Council (MRC) Clinical Sciences Centre Proteomics facility and Agilent Technologies for their support regarding the LC-MS analysis. Affymetrix array hybridization and quality control was carried out by the Genomics Laboratory at the MRC Clinical Sciences Centre. A.S. is supported as an MRC Professor. This work was supported by MRC funding to P.H. (MC A652 5PY70) as well as a Wellcome Trust grant to M.A.S. (RG49135) and MRC funding to A.S. (G1001028).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived of and designed by H.G.L., K.R.M. and P.H. Experiments were performed by H.G.L., K.R.M., A.T., V.E., B.N. and P.H. Bioinformatic analysis was performed by T.C. and K.R.M. Blastocyst injections were performed by W.M., N.G. and J.G.K. provided reagents. A.S. and M.A.S. provided critical feedback. H.G.L., K.R.M. and P.H. wrote the manuscript.

Corresponding author

Correspondence to Petra Hajkova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Note (PDF 1426 kb)

Data set

Supplementary Table 1 (XLSX 3906 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitch, H., McEwen, K., Turp, A. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20, 311–316 (2013). https://doi.org/10.1038/nsmb.2510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing