Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells

Abstract

To study the role of parental imprinting in human embryogenesis, we generated parthenogenetic human induced pluripotent stem cells (iPSCs) with a homozygote diploid karyotype. Global gene expression and DNA methylation analyses of the parthenogenetic cells enabled the identification of the entire repertoire of paternally expressed genes. We thus demonstrated that the gene U5D, encoding a variant of the U5 small RNA component of the spliceosome, is an imprinted gene. Introduction of the U5D gene into parthenogenetic cells partially corrected their molecular phenotype. Our analysis also uncovered multiple miRNAs existing as imprinted clustered transcripts, whose putative targets we then studied further. Examination of the consequences of parthenogenesis on human development identified marked effects on the differentiation of extraembryonic trophectoderm and embryonic liver and muscle tissues. This analysis suggests that distinct regulatory imprinted small RNAs and their targets have substantial roles in human development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of parthenogenetic HiPSCs showing normal diploid homozygote genome.
Figure 2: Global expression and DNA methylation analysis of imprinted genes in parthenogenetic HiPSCs.
Figure 3: Small noncoding imprinted RNAs in parthenogenetic HiPSCs.
Figure 4: Differentiation potential of human parthenogenesis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Surani, M.A. & Barton, S.C. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222, 1034–1036 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Revazova, E.S. et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9, 432–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Mai, Q. et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 17, 1008–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Brevini, T.A. et al. Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Rev. 5, 340–352 (2009).

    Article  Google Scholar 

  9. Kim, K. et al. Histocompatible embryonic stem cells by parthenogenesis. Science 315, 482–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, K. et al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1, 346–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Surti, U., Hoffner, L., Chakravarti, A. & Ferrell, R.E. Genetics and biology of human ovarian teratomas. I. Cytogenetic analysis and mechanism of origin. Am. J. Hum. Genet. 47, 635–643 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pick, M. et al. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 27, 2686–2690 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Luedi, P.P. et al. Computational and experimental identification of novel human imprinted genes. Genome Res. 17, 1723–1730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tucker, K.L. et al. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10, 1008–1020 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Sontheimer, E.J. & Steitz, J.A. Three novel functional variants of human U5 small nuclear RNA. Mol. Cell. Biol. 12, 734–746 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edwards, C.A. & Ferguson-Smith, A.C. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol. 19, 281–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Chabot, B., Black, D.L., LeMaster, D.M. & Steitz, J.A. The 3′ splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. Science 230, 1344–1349 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Patterson, B. & Guthrie, C. An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell 49, 613–624 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Hentze, M.W. & Kulozik, A.E. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96, 307–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Seitz, H. et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat. Genet. 34, 261–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Seitz, H. et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 14, 1741–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suh, M.R. et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Voorhoeve, P.M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Fundele, R.H. et al. Temporal and spatial selection against parthenogenetic cells during development of fetal chimeras. Development 108, 203–211 (1990).

    CAS  PubMed  Google Scholar 

  26. Thomson, J.A. & Solter, D. The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev. 2, 1344–1351 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Thomson, J.A. & Solter, D. Chimeras between parthenogenetic or androgenetic blastomeres and normal embryos: allocation to the inner cell mass and trophectoderm. Dev. Biol. 131, 580–583 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Nagy, A., Sass, M. & Markkula, M. Systematic non-uniform distribution of parthenogenetic cells in adult mouse chimaeras. Development 106, 321–324 (1989).

    CAS  PubMed  Google Scholar 

  29. Strain, L., Warner, J.P., Johnston, T. & Bonthron, D.T. A human parthenogenetic chimaera. Nat. Genet. 11, 164–169 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, R.H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Will, C.L. & Luhrmann, R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Karijolich, J. & Yu, Y.T. Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S. & Hannon, G.J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 12135–12140 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, I.H., Lerou, P.H., Zhao, R., Huo, H. & Daley, G.Q. Generation of human induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Le Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1, 177–200 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Pick for her help with generating parthenogenetic iPSCs and O. Bar-Nur for providing WT-HiPSCs; U. Ben-David for his technical help with the teratoma formation experiments; T. Golan-Lev for her assistance with the graphic design and immunostaining assays; and A. Eden, D. Kitsberg, Y. Mayshar, D. Ronen and N. Sharon for critical reading of the manuscript. N.B. is the Herbert Cohn Chair in Cancer Research. This research was supported partially by the Israel Science Foundation–Morasha Foundation (grant no. 943/09).

Author information

Authors and Affiliations

Authors

Contributions

Y.S.: conception and design, collection and assembly of data, data analysis and interpretation, and manuscript writing; O.Y.: conception and design, and collection and assembly of data; N.B.: conception and design, financial support, data analysis and interpretation, manuscript writing and final approval of the manuscript.

Corresponding author

Correspondence to Nissim Benvenisty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures 1–8

Supplementary Figures 1–8 (PDF 7072 kb)

Supplementary Table 1

Expression profile of differentially expressed genes and mirRNAs (XLS 435 kb)

Supplementary Table 2

Tissue specific gene expression analysis (XLS 568 kb)

Supplementary Table 3

Gene expression analysis following 7 days of treatment with BMP4 (XLS 25 kb)

Supplementary Table 4

Full list of primers (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzer, Y., Yanuka, O. & Benvenisty, N. Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nat Struct Mol Biol 18, 735–741 (2011). https://doi.org/10.1038/nsmb.2050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing