Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq

Abstract

Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container (https://github.com/Gal-Keshet/EpiTyping) and produces reliable results in 1–4 d.

Key points

  • This protocol provides a step-by-step procedure to infer the presence of epigenetic aberrations in human pluripotent stem cells from RNA sequencing data, specifically focusing on the identification of imprinting and X-inactivation status.

  • The pipeline provides a simple and easy-to-use methodology for the reliable identification of gene- and locus-specific loss-of-imprinting events as well as the accurate discrimination among different X-inactivation statuses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic aberrations.
Fig. 2: Expression and allelic representation of epigenetic aberrations.
Fig. 3: Workflow.
Fig. 4: Example of output.
Fig. 5: Implications of epigenetic aberrations.

Similar content being viewed by others

Data availability

The RNA-seq samples used as an example in this protocol, along with additional samples, can be retrieved from the SRA database. Their accession numbers are specified in Supplementary Table 2.

Code availability

All code used in this protocol is available at https://github.com/Gal-Keshet/EpiTyping and in the Supplementary Information.

References

  1. De Los Angeles, A. et al. Hallmarks of pluripotency. Nature 525, 469–478 (2015).

    Article  Google Scholar 

  2. Shahbazi, M. N., Siggia, E. D. & Zernicka-Goetz, M. Self-organization of stem cells into embryos: a window on early mammalian development. Science 364, 948–951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17, 194–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell, J., Barbaric, I. & Andrews, P. W. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat. Rev. Mol. Cell Biol. 21, 715–728 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Avior, Y., Lezmi, E., Eggan, K. & Benvenisty, N. Cancer-related mutations identified in primed human pluripotent stem cells. Cell Stem Cell 28, 10–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Lezmi, E. & Benvenisty, N. Identification of cancer-related mutations in human pluripotent stem cells using RNA-seq analysis. Nat. Protoc. 16, 4522–4537 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Ben-David, U., Mayshar, Y. & Benvenisty, N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat. Protoc. 8, 989–997 (2013).

    Article  PubMed  Google Scholar 

  9. Bar, S. & Benvenisty, N. Epigenetic aberrations in human pluripotent stem cells. EMBO J. 38, e101033 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yilmaz, A. & Benvenisty, N. Defining human pluripotency. Cell Stem Cell 25, 9–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Tucci, V. et al. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Bar, S., Schachter, M., Eldar-Geva, T. & Benvenisty, N. Large-scale analysis of loss of imprinting in human pluripotent stem cells. Cell Rep. 19, 957–968 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Keshet, G. & Benvenisty, N. Large-scale analysis of imprinting in naive human pluripotent stem cells reveals recurrent aberrations and a potential link to FGF signaling. Stem Cell Rep. 16, 2520–2533 (2021).

    Article  CAS  Google Scholar 

  16. Nora, E. P. & Heard, E. X chromosome inactivation: when dosage counts. Cell 139, 865–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Shen, Y. et al. X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc. Natl Acad. Sci. USA 105, 4709–4714 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruck, T. & Benvenisty, N. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Res. 6, 187–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Patel, S. et al. Human embryonic stem cells do not change their X inactivation status during differentiation. Cell Rep. 18, 54–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Yokobayashi, S. et al. Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells. Cell Rep. 37, 109909 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Bar, S., Seaton, L. R., Weissbein, U., Eldar-Geva, T. & Benvenisty, N. Global characterization of X chromosome inactivation in human pluripotent stem cells. Cell Rep. 27, e3 (2019).

    Article  Google Scholar 

  24. Werner, J. M., Ballouz, S., Hover, J. & Gillis, J. Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev. Cell 57, 1995–2008.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sagi, I. & Benvenisty, N. Aspiring to naivety. Nature 540, 211–212 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Sarel-Gallily, R. & Benvenisty, N. Large-scale analysis of X inactivation variations between primed and naïve human embryonic stem cells. Cells 11, 1729 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morison, I. M., Ramsay, J. P. & Spencer, H. G. A census of mammalian imprinting. Trends Genet. 21, 457–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Surani, M. A. H., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Sagi, I. et al. Distinct imprinting signatures and biased differentiation of human androgenetic and parthenogenetic embryonic stem cells. Cell Stem Cell 25, 419–432.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Cassidy, S. B., Schwartz, S., Miller, J. L. & Driscoll, D. J. Prader–Willi syndrome. Genet. Med. 14, 10–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Margolis, S. S., Sell, G. L., Zbinden, M. A. & Bird, L. M. Angelman syndrome. Neurotherapeutics 12, 641–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weksberg, R., Shuman, C. & Beckwith, J. B. Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 18, 8–14 (2010).

    Article  PubMed  Google Scholar 

  38. Ishida, M. New developments in Silver–Russell syndrome and implications for clinical practice. Epigenomics 8, 563–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foong, Y. H., Thorvaldsen, J. L. & Bartolomei, M. S. Two sides of the Dlk1-Dio3 story in imprinting. Dev. Cell 56, 3035–3037 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Jinnah, H. A. Lesch–Nyhan disease: from mechanism to model and back again. Dis. Model. Mech. 2, 116–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Migeon, B. R. X-linked diseases: susceptible females. Genet. Med. 22, 1156–1174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mekhoubad, S. et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10, 595–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eisen, B. et al. Electrophysiological abnormalities in induced pluripotent stem cell‐derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J. Cell. Mol. Med. 23, 2125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Da Cruz, L. et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36, 328–337 (2018).

    Article  PubMed  Google Scholar 

  46. Sonntag, K. C. et al. Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog. Neurobiol. 168, 1–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, S., Du, K. & Zou, C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res. Ther. 11, 275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lozano-Ureña, A. et al. Aberrations of genomic imprinting in glioblastoma formation. Front. Oncol. 11, 630482 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fu, J. et al. DNA methylation of imprinted genes KCNQ1, KCNQ1OT1, and PHLDA2 in peripheral blood is associated with the risk of breast cancer. Cancers 14, 2652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, J. et al. Epigenetic imprinting alterations as effective diagnostic biomarkers for early-stage lung cancer and small pulmonary nodules. Clin. Epigenetics 13, 220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim, D. H. K. & Maher, E. R. Genomic imprinting syndromes and cancer. Adv. Genet. 70, 145–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Davies, H. D. et al. Myeloid leukemia in Prader–Willi syndrome. J. Pediatr. 142, 174–178 (2003).

    Article  PubMed  Google Scholar 

  53. Wang, D. et al. Abnormal X chromosome inactivation and tumor development. Cell. Mol. Life Sci. 77, 2949–2958 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Spatz, A., Borg, C. & Feunteun, J. X-chromosome genetics and human cancer. Nat. Rev. Cancer 4, 617–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Silva, S. S., Rowntree, R. K., Mekhoubad, S. & Lee, J. T. X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc. Natl Acad. Sci. USA 105, 4820–4825 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28, 1106–1114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yong, W. S., Hsu, F. M. & Chen, P. Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin 9, 26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Irizarry, R. A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 18, 780–790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taiwo, O. et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc. 7, 617–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Brinkman, A. B. et al. Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52, 232–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, Q., Hermanson, P. J. & Springer, N. M. Detection of DNA methylation by whole-genome bisulfite sequencing. Methods Mol. Biol. 1676, 185–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Kluin, R. J. C. et al. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinforma. 19, 366 (2018).

    Article  CAS  Google Scholar 

  64. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brouard, J. S., Schenkel, F., Marete, A. & Bissonnette, N. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J. Anim. Sci. Biotechnol. 10, 1–6 (2019).

    Article  CAS  Google Scholar 

  67. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Danecek, P. & McCarthy, S. A. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 33, 2037–2039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Hu, Z. et al. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Sci. Adv. 6, eaaz0298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Assa Sherman for additional testing of the pipeline and providing constructive input, and all members of The Azrieli Center for Stem Cells and Genetic Research for critical reading of the manuscript. This work was partially supported by the Azrieli Foundation, the Rosetrees Trust, the US–Israel Binational Science Foundation (2021278), the Israel Science Foundation (2054/22), the ISF-Israel Precision Medicine Partnership (IPMP) Program (3605/21) and the HEAL project, funded by the European Union, EU Horizon (101056712). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or EU Horizon. Neither the European Union nor EU Horizon can be held responsible for them. N.B. is the Herbert Cohn Chair in Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

R.S.-G., G.K. and N.B. designed the analysis. R.S.-G. developed the X-inactivation analysis bioinformatic pipeline. G.K. developed the LOI analysis bioinformatic pipeline. R.S.-G. and G.K. wrote the manuscript and designed the automated code with input from S.K, G.H.-A. and N.B. N.B. supervised the work.

Corresponding authors

Correspondence to Gal Keshet or Nissim Benvenisty.

Ethics declarations

Competing interests

N.B. is chief scientific officer of NewStem Ltd.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Bar, S. & Benvenisty, N. EMBO J. 38, e101033 (2019): https://doi.org/10.15252/embj.2018101033

Keshet, G. & Benvenisty, N. Stem Cell Rep. 16, 2520–2533 (2021): https://doi.org/10.1016/j.stemcr.2021.09.002

Sarel-Gallily, R. & Benvenisty, N. Cells 11, 1729 (2022): https://doi.org/10.3390/cells11111729

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Files 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarel-Gallily, R., Keshet, G., Kinreich, S. et al. EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq. Nat Protoc 18, 3881–3917 (2023). https://doi.org/10.1038/s41596-023-00898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00898-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing