Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder

Key Points

  • The tissue of the urinary bladder undergoes constant loading and unloading cycles to fulfil its role in normal physiological conditions

  • Insight into bladder biomechanics is important for restoring its functional properties when bladder augmentation is required

  • Biomechanical clinical assessments include whole-organ urodynamics, whereas preclinical assessments that have been used in animal models also include ex vivo tensile tests of bladder tissue

  • Biomechanical qualification of tissue-engineered bladder scaffolds is crucial; however, the biomechanics of scaffolds have been poorly researched compared with their structural appearance and cellular interactions

  • Mathematical and computational modelling based on biomechanical studies can be used to predict the mechanical performance of a tissue-engineered scaffold

  • A comprehensive algorithm is recommended to study engineered scaffolds in order to validate preclinical experiments before clinical use of these materials

Abstract

The urinary bladder is a complex organ with the primary functions of storing urine under low and stable pressure and micturition. Many clinical conditions can cause poor bladder compliance, reduced capacity, and incontinence, requiring bladder augmentation or use of regenerative techniques and scaffolds. To replicate an organ that is under frequent mechanical loading and unloading, special attention towards fulfilling its biomechanical requirements is necessary. Several biological and synthetic scaffolds are available, with various characteristics that qualify them for use in bladder regeneration in vitro and in vivo, including in the treatment of clinical conditions. The biomechanical properties of the native bladder can be investigated using a range of mechanical tests for standardized assessments, as well as mathematical and computational bladder biomechanics. Despite a large body of research into tissue engineering of the bladder wall, some features of the native bladder and the scaffolds used to mimic it need further elucidation. Collection of comparable reference data from different animal models would be a helpful tool for researchers and will enable comparison of different scaffolds in order to optimize characteristics before entering preclinical and clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bladder anatomy and muscle layers.
Figure 2: The important role of mechanical properties in the design and development of scaffolds for bladder tissue engineering.
Figure 3: Hysteresis and preconditioning cycles.
Figure 4: Typical stress–strain curve of biological soft tissues.
Figure 5: The setup of different mechanical tests.
Figure 6: Computational modelling of an augmentation cystoplasty using a tissue-engineered graft.
Figure 7: A suggested preclinical algorithm to validate scaffolds for bladder augmentation.

Similar content being viewed by others

References

  1. Drake, M. J. The integrative physiology of the bladder. Ann. R. Coll. Surg. Engl. 89, 580–585 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andersson, K.-E. & Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Snow, B. W. & Cartwright, P. C. Bladder autoaugmentation. Urol. Clin. North Am. 23, 323–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Cranidis, A. & Nestoridis, G. Bladder augmentation. Int. Urogynecol. J. Pelv. Floor Dysfunct. 11, 33–40 (2000).

    Article  CAS  Google Scholar 

  5. Husmann, D. A. Mortality following augmentation cystoplasty: a transitional urologist's viewpoint. J. Pediatr. Urol. 13, 358–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. McDougal, W. S. Metabolic complications of urinary intestinal diversion. J. Urol. 147, 1199–1208 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Atala, A., Bauer, S. B., Hendren, W. H. & Retik, A. B. The effect of gastric augmentation on bladder function. J. Urol. 149, 1099–1102 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Kaefer, M. et al. Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. J. Urol. 160, 2187–2190 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Atala, A. Tissue engineering of human bladder. Br. Med. Bull. 97, 81–104 (2011).

    Article  PubMed  Google Scholar 

  10. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).

    Article  PubMed  Google Scholar 

  11. Atala, A. Bladder regeneration by tissue engineering. BJU Int. 88, 765–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Guilak, F., Butler, D. L., Goldstein, S. A. & Baaijens, F. P. T. Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47, 1933–1940 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tiemessen, D. et al. The effect of a cyclic uniaxial strain on urinary bladder cells. World J. Urol. 35, 1531–1539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Birder, L. A. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascul. Pharmacol. 45, 221–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Farhat, W. A. & Yeger, H. Does mechanical stimulation have any role in urinary bladder tissue engineering? World J. Urol. 26, 301–305 (2008).

    Article  PubMed  Google Scholar 

  17. Gill, B. C., Damaser, M. S. & Chermansky, C. J. Future perspectives in bladder tissue engineering. Curr. Bl. Dysfunct. Rep. 10, 443–448 (2015).

    Article  Google Scholar 

  18. Osborn, S. L. & Kurzrock, E. A. Bioengineered bladder tissue — close but yet so far! J. Urol. 194, 619–620 (2015).

    Article  PubMed  Google Scholar 

  19. Gray, H. in Anatomy of the Human Body 1821–1865 (1918).

    Google Scholar 

  20. Nagatomi, J., Toosi, K. K., Grashow, J. S., Chancellor, M. B. & Sacks, M. S. Quantification of bladder smooth muscle orientation in normal and spinal cord injured rats. Ann. Biomed. Eng. 33, 1078–1089 (2005).

    Article  PubMed  Google Scholar 

  21. Hakenberg, O. W., Linne, C., Manseck, a & Wirth, M. P. Bladder wall thickness in normal adults and men with mild lower urinary tract symptoms and benign prostatic enlargement. Neurourol. Urodyn. 19, 585–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Alison Blatt, H., Titus, J. and Chan, L. Ultrasound measurement of bladder wall thickness in the assessment of voiding dysfunction. J. Urol. 179, 2275–2279 (2008).

    Article  PubMed  Google Scholar 

  23. Abrams, P. in Urodynamics 7–16 (Springer-Verlag, London, 2006).

    Google Scholar 

  24. DeLancey, J. O. et al. in Incontinence (eds Abrams, P., Cardozo, L., Khoury, S. & Wein, A.) 17–82 (Health Publication, Plymouth, UK, 2002).

    Google Scholar 

  25. Lee, G. Y. H. & Lim, C. T. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111–118 (2006).

    Article  CAS  Google Scholar 

  26. Lim, C. T., Zhou, E. H., Li, A., Vedula, S. R. K. & Fu, H. X. Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C 26, 1278–1288 (2005).

    Article  CAS  Google Scholar 

  27. Woo, S. L., Gomez, M. A. & Akeson, W. H. The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J. Biomech. Eng. 103, 293–298 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Johnson, G. A., Livesay, G. A., Woo, S. L.-Y. & Rajagopal, K. R. A. Single integral finite strain viscoelastic model of ligaments and tendons. J. Biomech. Eng. 118, 221–226 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Deveaud, C. M. et al. Molecular analysis of collagens in bladder fibrosis. J. Urol. 160, 1518–1527 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Nagatomi, J., Gloeckner, D. C., Chancellor, M. B., DeGroat, W. C. & Sacks, M. S. Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Ann. Biomed. Eng. 32, 1409–1419 (2004).

    Article  PubMed  Google Scholar 

  31. Cortivo, R., Pagano, F., Passerini, G., Abatangelo, G. & Castellani, I. Elastin and collagen in the normal and obstructed urinary bladder. Br. J. Urol. 53, 134–137 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Thompoulos, S. & Genin, G. M. in Orthopaedic Biomechanics (ed. Winkelstein, B. A.) 49–74 (CRC Press, 2012).

    Book  Google Scholar 

  33. Nitta, N., Shiina, T. & Ueno, E. in IEEE Symposium on Ultrasonics Vol. 2 1606–1609 (Honolulu, HI, USA 2003).

    Google Scholar 

  34. Zanetti, E. M., Perrini, M., Bignardi, C. & Audenino, A. L. Bladder tissue passive response to monotonic and cyclic loading. Biorheology 49, 49–63 (2012).

    PubMed  Google Scholar 

  35. Ross, S. E. et al. Hysteretic behavior of bladder afferent neurons in response to changes in bladder pressure. BMC Neurosci. 17, 57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mastrigt, R. & Nagtegaal, J. Dependence of the.viscoelastic response of the urinary bladder wall on strain rate. Med. Biol. Eng. Comput 19, 291–296 (1981).

    Article  PubMed  Google Scholar 

  37. Natali, A. N. et al. Bladder tissue biomechanical behavior: experimental tests and constitutive formulation. J. Biomech. 48, 3088–3096 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Nagatomi, J., Toosi, K. K., Chancellor, M. B. & Sacks, M. S. Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall. Biomech. Model. Mechanobiol. 7, 395–404 (2008).

    Article  PubMed  Google Scholar 

  39. Levin, R. M., Horan, P. & Liu, S. P. Metabolic aspects of urinary bladder filling. Scand. J. Urol. Nephrol. Suppl. 201, 59–66 (1999).

    CAS  PubMed  Google Scholar 

  40. Blaivas, J., Chancellor, M. B., Weiss, J. & Verhaaren, M. in Atlas of Urodynamics 2nd edn 56–61 (Wiley-Blackwell, Oxford, UK, 2008).

    Google Scholar 

  41. Harris, R. L., Cundiff, G. W., Theofrastous, J. P. & Bump, R. C. Bladder compliance in neurologically intact women. Neurourol. Urodyn. 15, 483–488 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Cho, S., Yi, J. & Oh, S. The clinical significance of poor bladder compliance. Neurourol. Urodyn. 28, 1010–1014 (2009).

    Article  PubMed  Google Scholar 

  43. McGuire, E. J., Woodside, J. R., Borden, T. A. & Weiss, R. M. Prognostic value of urodynamic testing in myelodysplastic patients. J. Urol. 167, 1049–1053 (2002).

    Article  PubMed  Google Scholar 

  44. Weston, P. M., Robinson, L. Q., Williams, S., Thomas, M. & Stephenson, T. P. Poor compliance early in filling in the neuropathic bladder. Br. J. Urol. 63, 28–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Ogawa, T. Bladder deformities in patients with neurogenic bladder dysfunction. Urol. Int. 47 (Suppl. 1), 59–62 (1991).

    Article  PubMed  Google Scholar 

  46. Gilmour, R. F. et al. A new technique for dynamic analysis of bladder compliance. J. Urol. 150, 1200–1203 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Weld, K. J., Graney, M. J. & Dmochowski, R. R. Differences in bladder compliance with time and associations of bladder management with compliance in spinal cord injured patients. J. Urol. 163, 1228–1233 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Alexander, R. S. Mechanical properties of urinary bladder. Am. J. Physiol. 220, 1413–1421 (1971).

    Article  CAS  PubMed  Google Scholar 

  49. Coplen, D. E., Macarak, E. J. & Levin, R. M. Developmental changes in normal fetal bovine whole bladder physiology. J. Urol. 151, 1391–1395 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Macarak, E. J. & Howard, P. S. The collagens and their urologic significance. Scand. J. Urol. Nephrol. Suppl. 184, 25–33 (1997).

    CAS  PubMed  Google Scholar 

  51. Murakumo, M. et al. Three-dimensional arrangement of collagen and elastin fibers in the human urinary bladder: a scanning electron microscopic study. J. Urol. 154, 251–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Dahms, S. E., Piechota, H. J., Dahiya, R. & Lue, T. F. & Tanagho, E. A. Composition and biomechanical properties of the bladder acellular matrix graft: Comparative analysis in rat, pig and human. Br. J. Urol. 82, 411–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Beach, Z. M., Gittings, D. J. & Soslowsky, L. J. in Muscle and Tendon Injuries: Evaluation and Management (eds Canata, G. L., d'Hooghe, P. & Hunt, K. J.) 15–22 (Springer, Berlin and Heidelberg, 2017).

    Book  Google Scholar 

  54. Martins, P. A. et al. Uniaxial mechanical behavior of the human female bladder. Int. Urogynecol. J. 22, 991–995 (2011).

    Article  PubMed  Google Scholar 

  55. Korossis, S., Bolland, F., Southgate, J., Ingham, E. & Fisher, J. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: implications for augmentation and tissue engineering strategies. Biomaterials 30, 266–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, J., Drzewiecki, B. A., Merryman, W. D. & Pope, J. C. Murine bladder wall biomechanics following partial bladder obstruction. J. Biomech. 46, 2752–2755 (2013).

    Article  PubMed  Google Scholar 

  57. Parekh, A. et al. Ex vivo deformations of the urinary bladder wall during whole bladder filling: contributions of extracellular matrix and smooth muscle. J. Biomech. 43, 1708–1716 (2010).

    Article  PubMed  Google Scholar 

  58. Gloeckner, D. C. et al. Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. J. Urol. 167, 2247–2252 (2002).

    Article  PubMed  Google Scholar 

  59. Chen, F., Wang, G., Li, L. & Cheng, H. Mechanical properties of a woven ramie fabric under multidimensional loadings. Text. Res. J. 81, 1226–1233 (2011).

    Article  CAS  Google Scholar 

  60. Özdemir, H. & Mert, E. The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics. J. Text. Inst. 104, 330–338.

  61. Freytes, D. O., Badylak, S. F., Webster, T. J., Geddes, L. A. & Rundell, A. E. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25, 2353–2361 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Whitson, B. A. et al. Multilaminate resorbable biomedical device under biaxial loading. J. Biomed. Mater. Res. 43, 277–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Freytes, D., Stoner, R. M. & Badylak, S. F. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J. Biomed. Mater. Res. B. Appl. Biomater. 84, 408–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Freytes, D. O. et al. Analytically derived material properties of multilaminated extracellular matrix devices using the ball-burst test. Biomaterials 26, 5518–5531 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Jokandan, M. S. et al. Bladder wall biomechanics: a comprehensive study on fresh porcine urinary bladder. J. Mech. Behav. Biomed. Mater. 79, 92–103 (2018).

    Article  PubMed  Google Scholar 

  66. Fry, C. H. et al. Modeling the urinary tract — computational, physical, and biological methods. Neurourol. Urodyn. 30, 692–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Bastiaanssen, E. H. C., Leeuwen, Van, J. L., Vanderschoot, J. & Redert, P. A. A. Myocybernetic model of the lower urinary tract. J. Theor. Biol. 178, 113–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Jankowski, R. J. et al. Development of an experimental system for the study of urethral biomechanical function. Am. J. Physiol. Ren. Physiol. 286, F225–F232 (2004).

    Article  CAS  Google Scholar 

  69. Damaser, M. S. & Lehman, S. L. The effect of urinary bladder shape on its mechanics during filling. J. Biomech. 28, 725–732 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Damaser, M., Fraser, M., Li, L., Sullivan, M. & Chermansky, C. in ICS 2013 https://www.ics.org/Workshops/HandoutFiles/000332.pdf (Barcelona, 2013).

    Google Scholar 

  71. Korkmaz, I. & Rogg, B. A simple fluid-mechanical model for the prediction of the stress — strain relation of the male urinary bladder. J. Biomech. 40, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Sun, W., Martin, C. & Pham, T. Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16, 53–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Samavati, N. et al. Effect of material property heterogeneity on biomechanical modeling of prostate under deformation. Phys. Med. Biol. 60, 195–209 (2015).

    Article  PubMed  Google Scholar 

  74. Lu, S. H. et al. Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials 26, 443–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Bol, M., Schmitz, A., Nowak, G. & Siebert, T. A three-dimensional chemo-mechanical continuum model for smooth muscle contraction. J. Mech. Behav. Biomed. Mater. 13, 215–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Politi, A. Z. et al. A multiscale, spatially-distributed model of asthmatic airway hyper-responsiveness. J. Theor. Biol. 266, 614–624 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Avolio, A., Jones, D. & Tafazzoli-Shadpour, M. Quantification of alterations in structure and function of elastin in the arterial media. Hypertension 32, 170–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Martin, C. & Sun, W. Fatigue damage of collagenous tissues: experiment, modeling and simulation studies. J. Long. Term. Eff. Med. Implants 25, 55–73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Davis, N. F. et al. Cell-seeded extracellular matrices for bladder reconstruction: An ex vivo comparative study of their biomechanical properties. Int. J. Artif. Organs 36, 251–258 (2013).

    Article  PubMed  Google Scholar 

  80. Yang, B. et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng. Part C. Methods 16, 1201–1211 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Kazbanov, I. V. et al. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart. PloS Comput. Biol. 10, e1003891 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Burrowes, K. S. B., C. Lark, A. R. C., Wilsher, M. L. W., Milne, D. G. M. & Tawhai, M. H. T. Hypoxic pulmonary vasoconstriction as a contributor to response in acute pulmonary embolism. Ann. Biomed. Eng. 42, 1631–1643 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Sutherland, R. S., Baskin, L. S., Hayward, S. W. & Cunha, G. R. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J. Urol. 156, 571–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Piechota, H. J. et al. Bladder acellular matrix graft: in vivo functional properties of the regenerated rat bladder. Urol. Res. 27, 206–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Yoo, J. J., Meng, J., Oberpenning, F. & Atala, A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51, 221–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Caione, P., Capozza, N., Zavaglia, D., Palombaro, G. & Boldrini, R. In vivo bladder regeneration using small intestinal submucosa: experimental study. Pediatr. Surg. Int. 22, 593–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kropp, B. P. et al. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 46, 396–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Kropp, B. P. et al. Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J. Urol. 156, 599–607 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Kropp, B. P. et al. Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol. 155, 2098–2104 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Kropp, B. P., Cheng, E. Y., Lin, H.-K. & Zhang, Y. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J. Urol. 172, 1710–1713 (2004).

    Article  PubMed  Google Scholar 

  91. Caione, P., Boldrinic, R., Salerno, A. & Nappo, S. G. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr. Surg. Int. 28, 421–428 (2012).

    Article  PubMed  Google Scholar 

  92. Zhang, Y. et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J. Urol. 164, 928–935 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Del Gaudio, C. et al. Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. Biomed. Mater. 8, 45013 (2013).

    Article  CAS  Google Scholar 

  94. Tu, D. D. et al. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty. Biomaterials 34, 8681–8689 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Oberpenning, F., Meng, J., Yoo, J. J. & Atala, A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17, 149–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, Y., Lin, H.-K., Frimberger, D., Epstein, R. B. & Kropp, B. P. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int. 96, 1120–1125 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Brehmer, B., Rohrmann, D., Rau, G. & Jakse, G. Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU Int. 97, 829–836 (2006).

    Article  PubMed  Google Scholar 

  98. Zhang, Y., Frimberger, D., Cheng, E. Y., Lin, H. K. & Kropp, B. P. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 98, 1100–1105 (2006).

    Article  PubMed  Google Scholar 

  99. Rohman, G., Pettit, J. J., Isaure, F., Cameron, N. R. & Southgate, J. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro. Biomaterials 28, 2264–2274 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Stankus, J. J., Freytes, D. O., Badylak, S. F. & Wagner, W. R. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J. Biomater. Sci. Polym. Ed. 19, 635–652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baker, S. C., Rohman, G., Southgate, J. & Cameron, N. R. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30, 1321–1328 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Jack, G. S. et al. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30, 3259–3270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Engelhardt, E.-M. et al. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials 32, 3969–3976 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Sharma, A. K. et al. A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells 29, 241–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Horst, M. et al. A bilayered hybrid micro fibrous PLGA-A cellular matrix scaffold for hollow organ tissue engineering. Biomaterials 34, 1537–1545 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Kajbafzadeh, A. M. et al. Bladder muscular wall regeneration with autologous adipose mesenchymal stem cells on three-dimensional collagen-based tissue-engineered prepuce and biocompatible nanofibrillar scaffold. J. Pediatr. Urol. 10, 1051–1058 (2014).

    Article  PubMed  Google Scholar 

  107. Sivaraman, S., Ostendorff, R., Fleishman, B. & Nagatomi, J. Tetronic®-based composite hydrogel scaffolds seeded with rat-bladder smooth muscle cells for urinary bladder tissue engineering applications. J. Biomater. Sci. Polym. Ed. 26, 196–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Horst, M. et al. Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. J. Biomed. Mater. Res. Part A 102, 2116–2124 (2014).

    Article  CAS  Google Scholar 

  109. Coutu, D. L., Mahfouz, W., Loutochin, O., Galipeau, J. & Corcos, J. Tissue engineering of rat bladder using marrow-derived mesenchymal stem cells and bladder acellular matrix. PloS ONE 9, e111966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ajalloueian, F., Zeiai, S., Fossum, M. & Hilborn, J. G. Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion. Biomaterials 35, 5741–5748 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Ajalloueian, F., Zeiai, S., Rojas, R., Fossum, M. & Hilborn, J. One-stage tissue engineering of bladder wall patches for an easy-to-use approach at the surgical table. Tissue Eng. Part C Methods 19, 688–696 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Engelhardt, E. et al. Compressed collagen gel: a novel scaffold for human bladder cells. J. Tissue Eng. Regen. Med. 4, 123–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Lima, S. V., Araújo, L. A., Vilar, F. O., Mota, D. & Maciel, A. Experience with demucosalized ileum for bladder augmentation. BJU Int. 88, 762–764 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kelâmi, A. Lyophilized human dura as a bladder wall substitute: experimental and clinical results. J. Urol. 105, 518–522 (1971).

    Article  PubMed  Google Scholar 

  115. Kambic, H. et al. Biodegradable pericardial implants for bladder augmentation: a 2.5-year study in dogs. J. Urol. 148, 539–543 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Fishman, I. J., Flores, F. N., Scott, F. B., Spjut, H. J. & Morrow, B. Use of fresh placental membranes for bladder reconstruction. J. Urol. 138, 1291–1294 (1987).

    Article  CAS  PubMed  Google Scholar 

  117. Merguerian, P., Chavez, D. R. & Hakim, S. Grafting of cultured uroepithelium and bladder mucosa into de-epithelialized segments of colon in rabbits. J. Urol. 152, 671–674 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Cheng, E. Y. & Kropp, B. P. Urologic tissue engineering with small-intestinal submucosa: potential clinical applications. World J. Urol. 18, 26–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, Y. & Liao, L. Histologic and functional outcomes of small intestine submucosa-regenerated bladder tissue. BMC Urol. 14, 69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sievert, K. D. and Tanagho, E. A. Organ-specific acellular matrix for reconstruction of the urinary tract. World J. Urol. 18, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Ashley, R. A. et al. Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. BJU Int. 105, 1462–1468 (2010).

    Article  PubMed  Google Scholar 

  122. Vaught, J. D. et al. Detrusor regeneration in the rat using porcine small intestinal submucosal Grafts: Functional Innervation and receptor expression. J. Urol. 155, 374–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Brown, a. L. et al. 22 Week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials 23, 2179–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Schaefer, M., Kaiser, A., Stehr, M. & Beyer, H. J. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J. Pediatr. Urol. 9, 878–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Badylak, S. F. & Lantz, G. C., Coffey, A. and Geddes, L. A. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47, 74–80 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Shell, D. H. et al. Comparison of small-intestinal submucosa and expanded polytetrafluoroethylene as a vascular conduit in the presence of gram-positive contamination. Ann. Surg. 241, 995–1004 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Robotin-Johnson, M. C., Swanson, P. E., Johnson, D. C., Schuessler, R. B. & Cox, J. L. An experimental model of small intestinal submucosa as a growing vascular graft. J. Thorac. Cardiovasc. Surg. 116, 805–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Ledet, E. H. et al. A pilot study to evaluate the effectiveness of small intestinal submucosa used to repair spinal ligaments in the goat. Spine J. 2, 188–196 (2002).

    Article  PubMed  Google Scholar 

  129. Musahl, V. et al. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament — a functional tissue engineering study in rabbits. J. Orthop. Res. 22, 214–220 (2004).

    Article  PubMed  Google Scholar 

  130. Liang, R. et al. Induction of c-myc oncoprotein and of cellular proliferation by radiation in normal human urothelial cultures. J. Orthop. Res. 11, 1609–1612 (2006).

    Google Scholar 

  131. Lindberg, K. & Badylak, S. F. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns 27, 254–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, F., Zhu, C., Oswald, T., Lei, M.-P. & Lineaweaver, W. C. Porcine small intestinal submucosa as a carrier for skin flap prefabrication. Ann. Plast. Surg. 51, 488–492 (2003).

    Article  PubMed  Google Scholar 

  133. Colvert, J. R. et al. The use of small intestinal submucosa as an off-the-shelf urethral sling material for pediatric urinary incontinence. J. Urol. 168, 1872–1876 (2002).

    Article  PubMed  Google Scholar 

  134. Palminteri, E., Berdondini, E., Colombo, F. & Austoni, E. Small intestinal submucosa (SIS) graft urethroplasty: short-term results. Eur. Urol. 51, 1695–1701 (2007).

    Article  PubMed  Google Scholar 

  135. Roth, C. C. et al. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int. 108, 148–155 (2011).

    Article  PubMed  Google Scholar 

  136. Qin, H. H. & Dunn, J. C. Y. Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J. Surg. Res. 171, e21–e26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liatsikos, E. N. et al. Ureteral reconstruction: small intestine submucosa for the management of strictures and defects of the upper third of the ureter. J. Urol. 165, 1719–1723 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Seth, A. et al. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials 34, 4758–4765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lakshmanan, Y., Frimberger, D., Gearhart, J. D. & Gearhart, J. P. Human embryoid body-derived stem cells in tissue engineering-enhanced migration in co-culture with bladder smooth muscle and urothelium. Urology 65, 821–826 (2005).

    Article  PubMed  Google Scholar 

  140. Chung, Y. G. et al. The use of bi-layer silk fibroin scaffolds and small intestinal submucosa matrices to support bladder tissue regeneration in a rat model of spinal cord injury. Biomaterials 35, 7452–7459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Feil, G. et al. Investigations of urothelial cells seeded on commercially available small intestine submucosa. Eur. Urol. 50, 1330–1337 (2006).

    Article  PubMed  Google Scholar 

  142. Lin, H. et al. Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng. Part B. Rev. 20, 73–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Brown, R. A., Wiseman, M., Chuo, C.-B., Cheema, U. & Nazhat, S. N. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv. Funct. Mater. 15, 1762–1770 (2005).

    Article  Google Scholar 

  144. Meezan, E., Hjelle, J. T., Brendel, K. & Carlson, E. C. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 17, 1721–1732 (1975).

    Article  CAS  PubMed  Google Scholar 

  145. Probst, M., Dahiya, R., Carrier, S. & Tanagho, E. A. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br. J. Urol. 79, 505–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Pokrywczynska, M., Gubanska, I., Drewa, G. & Drewa, T. Application of bladder acellular matrix in urinary bladder regeneration: the state of the art and future directions. Biomed. Res. Int. 2015, 613439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Boruch, A. V., Nieponice, A., Qureshi, I. R., Gilbert, T. W. & Badylak, S. F. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J. Surg. Res. 161, 217–225 (2010).

    Article  PubMed  Google Scholar 

  148. Zhao, Y. et al. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta Biomater. 23, 91–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Mauney, J. R. et al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials 32, 808–818 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Ashkar, L. & Heller, E. The silastic bladder patch. J. Urol. 98, 679–683 (1967).

    Article  CAS  PubMed  Google Scholar 

  151. Bohne, A. W., Osborn, R. W. & Hettle, P. J. Regeneration of the urinary bladder in the dog, following total cystectomy. Surg. Gynecol. Obstet. 100, 259–264 (1955).

    CAS  PubMed  Google Scholar 

  152. Bohne, A. W. & Urwiller, K. L. Experience with urinary bladder regeneration. J. Urol. 77, 725–732 (1957).

    Article  CAS  PubMed  Google Scholar 

  153. Kudish, H. G. The use of polyvinyl sponge for experimental cystoplasty. J. Urol. 78, 232–235 (1957).

    Article  CAS  PubMed  Google Scholar 

  154. Jack, G. S. et al. Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J. Urol. 174, 2041–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Usas, A. & Huard, J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28, 5401–5406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Duan, B. et al. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro. J. Biomater. Sci. Polym. Ed. 18, 95–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Shukla, D., Box, G. N., Edwards, R. a. & Tyson, D. R. Bone marrow stem cells for urologic tissue engineering. World J. Urol. 26, 341–349 (2008).

    Article  PubMed  Google Scholar 

  158. Zhao, J. et al. Transdifferentiation of autologous bone marrow cells on a collagen-poly(1-caprolactone) scaffold for tissue engineering in complete lack of native urothelium. J. R. Soc. Interface 11, 20140233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Romagnoli, G. et al. Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium. N. Engl. J. Med. 323, 527–530 (1990).

    Article  CAS  PubMed  Google Scholar 

  160. Purves, J. T. & Gearhart, J. P. Paraexstrophy skin flaps for the primary closure of exstrophy in boys: outmoded or updated? J. Urol. 180, 1675–1679 (2008).

    Article  PubMed  Google Scholar 

  161. Kuberka, M., von Heimburg, D., Schoof, H., Heschel, I. & Rau, G. Magnification of the pore size in biodegradable collagen sponges. Int. J. Artif. Organs 25, 67–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Goldstein, R. E. & Westropp, J. L. Urodynamic testing in the diagnosis of small animal micturition disorders. Clin. Tech. Small Anim. Pract. 20, 65–72 (2005).

    Article  PubMed  Google Scholar 

  163. Chung, S. Y. et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J. Urol. 174, 353–359 (2005).

    Article  PubMed  Google Scholar 

  164. Kropp, B. P. et al. Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J. Urol. 162, 1779–1784 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Galmiche, M. C., Koteliansky, V. E., Brière, J., Hervé, P. & Charbord, P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82, 66–76 (1993).

    CAS  PubMed  Google Scholar 

  166. Ross, J. J. et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J. Clin. Invest. 116, 3139–3149 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sharma, A. K. et al. Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. Proc. Natl Acad. Sci. USA 110, 4003–4008 (2013).

    Article  PubMed  Google Scholar 

  168. Bury, M. I., Fuller, N. J., Wethekam, L. & Sharma, A. K. Bone marrow derived cells facilitate urinary bladder regeneration by attenuating tissue inflammatory responses. Cent. Eur. J. Urol. 68, 115–120 (2015).

    Article  CAS  Google Scholar 

  169. Tian, H. et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials 31, 870–877 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Tian, H. et al. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng. Part A 16, 1769–1779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Leite, M. T. C. et al. The use of mesenchymal stem cells in bladder augmentation. Pediatr. Surg. Int. 30, 361–370 (2014).

    Article  PubMed  Google Scholar 

  172. Flieger, A., Golka, K., Schulze, H. & Follmann, W. Primary cultures of human urothelial cells for genotoxicity testing. J. Toxicol. Environ. Health. A 71, 930–935 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Chamley-Campbell, J., Campbell, G. R. & Ross, G. The smooth muscle cell in culture. Physiol. Rev. 59, 1–61 (1979).

    Article  CAS  PubMed  Google Scholar 

  174. Bolin, S. R., Matthews, P. J. & Ridpath, J. F. Methods for detection and frequency of contamination of fetal calf serum with bovine viral diarrhea virus and antibodies against bovine viral diarrhea virus. J. Vet. Diagn. Invest. 3, 199–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  175. Lovett, M. L., Cannizzaro, C. M., Vunjak-Novakovic, G. & Kaplan, D. L. Gel spinning of silk tubes for tissue engineering. Biomaterials 29, 4650–4657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, Y., Kim, H.-J., Vunjak-Novakovic, G. & Kaplan, D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27, 6064–6082 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Paterson, R. F. et al. Multilayered small intestinal submucosa is inferior to autologous bowel for laparoscopic bladder augmentation. J. Urol. 168, 2253–2257 (2002).

    Article  PubMed  Google Scholar 

  179. Bury, M. I. et al. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials 35, 9311–9321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pokrywczynska, M. et al. Is the poly (L-lactide-co-caprolactone) nanofibrous membrane suitable for urinary bladder regeneration? PloS ONE 9, e105295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kanematsu, A. et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25, 4513–4520 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Farhat, W. a et al. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties. Biomed. Mater. 3, 25015 (2008).

    Article  CAS  Google Scholar 

  183. Huang, J. et al. Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. J. Biomed. Mater. Res. Part A 104, 9–16 (2016).

    Article  CAS  Google Scholar 

  184. Jayo, M. J., Jain, D., Wagner, B. J. & Bertram, T. A. Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies. J. Urol. 180, 392–397 (2008).

    Article  PubMed  Google Scholar 

  185. Gomez, P. et al. The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials 32, 7562–7570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dorsher, P. T. & McIntosh, P. M. Neurogenic bladder. Adv. Urol. 2012, 816274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yao, C. et al. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. Int. J. Nanomed. 8, 3285–3296 (2013).

    Google Scholar 

  188. Tiemessen, D. et al. The effect of a cyclic uniaxial strain on urinary bladder cells. World J. Urol. 35, 1531–1539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Danish Research Council Foundation (Individual Postdoctoral Grant DFF-4093-00282A and Sapere Aude: DFF-Research Talent 4217-00048A), the Freemason Foundation for Children's Welfare, the Stockholm City Council, and the Swedish Society of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

F.A., J.H., I.S.C., and M.F. made substantial contributions to the discussion of content. F.A. and G.L. researched data for the article and wrote the manuscript. All authors reviewed and edited the article before submission.

Corresponding authors

Correspondence to Fatemeh Ajalloueian or Magdalena Fossum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Load-history-dependent behaviour

A characteristic observed in biological soft tissues owing to viscoelasticity. The response of such materials to loading and unloading depends on how quickly the load is applied or removed. This can be considered as time-dependent material behaviour as well.

Hysteresis

The phenomenon in which a body subjected to cyclic loading–unloading exhibits different stress–strain relationships during loading and unloading procedures. The area enclosed by the loading and unloading curve is called the hysteresis loop, which represents the energy dissipated during the deformation and recovery phases.

Stress relaxation

The phenomenon in which a sample is suddenly strained and maintained at a final strain, and its stress gradually decreases with time.

Creep

The phenomenon in which a sample is suddenly stressed, and the load is held for some time. If the sample continues to deform, it is said to be exhibiting creep.

Viscoelasticity

A property of materials that exhibit both viscous and elastic characteristics when experiencing deformation.

Cystometry

The clinical diagnostic procedure that is used to evaluate bladder function and pressure during filling and voiding.

Cystogram

The resulting chart from cystometry. The intravesical volume is plotted against the intravesical pressure, where urinary leakage and patient sensation are also recorded.

Plastoelasticity

A property of materials that exhibit both elastic recovery and plastic (residual) deformation

Anisotropy

A term used in various scientific disciplines to indicate that the material properties vary with the direction from which they are measured.

Areal strain

The 2D change in area caused by deformation.

Lattice contractility assay164

An assay in which different cell types are mixed with the soluble stabilized type I collagen to create a cell-collagen solution. The solution is placed onto a tissue culture plate, maintained for a predefined duration, and mechanically released from the underlying plastic. The relative change in diameter of cell-collagen lattices is calculated by dividing the lattice diameters at 10 min after release by the initial diameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajalloueian, F., Lemon, G., Hilborn, J. et al. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 15, 155–174 (2018). https://doi.org/10.1038/nrurol.2018.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2018.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing