Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Addressing the need for repeat prostate biopsy: new technology and approaches

Key Points

  • No formal guidelines exist regarding management of patients following negative findings on initial biopsy sample analysis, despite high or elevated serum PSA levels that suggest the presence of prostate cancer

  • Analysis of repeat biopsy samples leads to a diagnosis of prostate cancer in 15–23% of patients who had a negative initial result

  • The development of new imaging modalities and molecular biomarkers for diagnosis and/or monitoring of patients in this clinical setting has provided new options for the management of these patients

  • Diagnosis and/or surveillance options, which have different advantages, include various serum PSA-based measurements, urinary prostate-cancer associated 3 (PCA3) RNA levels, MRI, ultrasonography and epigenetic tissue-based assays

  • A strategy for identifying men at an increased risk of prostate cancer is presented, with the aim of increasing diagnostic accuracy while decreasing the number of unnecessary biopsy procedures

Abstract

No guidelines currently exist that address the need for rebiopsy in patients with a negative diagnosis of prostate cancer on initial biopsy sample analysis. Accurate diagnosis of prostate cancer in these patients is often complicated by continued elevation of serum PSA levels that are suggestive of prostate cancer, resulting in a distinct management challenge. Following negative initial findings of biopsy sample analysis, total serum PSA levels and serum PSA kinetics are ineffective indicators of a need for a repeat biopsy; therefore, patients suspected of having prostate cancer might undergo several unnecessary biopsy procedures. Several alternative strategies exist for identifying men who might be at risk of prostate cancer despite negative findings of biopsy sample analysis. Use of other serum PSA-related measurements enables more sensitive and specific diagnosis and can be combined with knowledge of clinicopathological features to improve outcomes. Other options include the FDA-approved Progensa® test and prostate imaging using MRI. Newer tissue-based assays that measure methylation changes in normal prostate tissue are currently being developed. A cost-effective strategy is proposed in order to address this challenging clinical scenario, and potential directions of future studies in this area are also described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Management of patients who continue to have elevated serum PSA levels despite a negative diagnosis of prostate cancer on analysis of a biopsy sample.

Similar content being viewed by others

References

  1. Durkan, G. C., Sheikh, N., Johnson, P., Hildreth, A. J. & Greene, D. R. Improving prostate cancer detection with an extended-core transrectal ultrasonography-guided prostate biopsy protocol. BJU Int. 89, 33–39 (2002).

    Article  CAS  Google Scholar 

  2. Gann, P. H., Fought, A., Deaton, R., Catalona, W. J. & Vonesh, E. Risk factors for prostate cancer detection after a negative biopsy: a novel multivariable longitudinal approach. J. Clin. Oncol. 28, 1714–1720 (2010).

    Article  Google Scholar 

  3. Bakardzhiev, I. V., Dechev, I. D., Wenig, T., Mateva, N. G. & Mladenova, M. M. Repeat transrectal prostate biopsies in diagnosing prostate cancer. Folia Med. (Plovdiv.) 54, 22–26 (2012).

    Article  Google Scholar 

  4. Tan, N. et al. Prostate cancers diagnosed at repeat biopsy are smaller and less likely to be high grade. J. Urol. 180, 1325–1329 (2008).

    Article  Google Scholar 

  5. Ploussard, G. et al. Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU Int. 111, 988–996 (2013).

  6. Roehl, K. A., Antenor, J. A. & Catalona, W. J. Serial biopsy results in prostate cancer screening study. J. Urol. 167, 2435–2439 (2002).

    Article  Google Scholar 

  7. Auprich, M. et al. External validation of urinary PCA3-based nomograms to individually predict prostate biopsy outcome. Eur. Urol. 58, 727–732 (2010).

    Article  Google Scholar 

  8. Benecchi, L. Pieri, A. M. Melissari, M. Potenzoni, M. & Pastizzaro, C. D. A novel nomogram to predict the probability of prostate cancer on repeat biopsy. J. Urol. 180, 146–149 (2008).

    Article  Google Scholar 

  9. Yanke, B. V., Gonen, M., Scardino, P. T. & Kattan, M. W. Validation of a nomogram for predicting positive repeat biopsy for prostate cancer. J. Urol. 173, 421–424 (2005).

    Article  Google Scholar 

  10. Progensa PCA3 assay. Hologic[online], (2015).

  11. Marks, L. S. et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 69, 532–535 (2007).

    Article  Google Scholar 

  12. Djavan, B. et al. Optimal predictors of prostate cancer on repeat prostate biopsy: a prospective study of 1,051 men. J. Urol. 163, 1144–1148 (2000).

    Article  CAS  Google Scholar 

  13. Catalona, W. J. et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 279, 1542–1547 (1998).

    Article  CAS  Google Scholar 

  14. Catalona, W. J. et al. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. JAMA 274, 1214–1220 (1995).

    Article  Google Scholar 

  15. Vickers, A. J. Thompson, I. M., Klein, E., Carroll, P. R. & Scardino, P. T. A commentary on PSA velocity and doubling time for clinical decisions in prostate cancer. Urology 83, 592–596 (2014).

    Article  Google Scholar 

  16. Andriole, G. L. et al. The effect of dutasteride on the usefulness of prostate specific antigen for the diagnosis of high grade and clinically relevant prostate cancer in men with a previous negative biopsy: results from the REDUCE study. J. Urol. 185, 126–131 (2011).

    Article  CAS  Google Scholar 

  17. Vickers, A. J. et al. Prostate specific antigen velocity does not aid prostate cancer detection in men with prior negative biopsy. J. Urol. 184, 907–912, (2010).

    Article  Google Scholar 

  18. Catalona, W. J. et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J. Urol. 185, 1650–1655 (2011).

    Article  CAS  Google Scholar 

  19. Scattoni, V. et al. Head-to-head comparison of prostate health index and urinary PCA3 for predicting cancer at initial or repeat biopsy. J. Urol. 190, 496–501 (2013).

    Article  Google Scholar 

  20. 4KScore. OPKO Lab[online], (2015).

  21. Parekh, D. J. et al. A Multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2014.10.021.

  22. Vedder, M. M. et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur. Urol. 66, 1109–1115 (2014).

    Article  CAS  Google Scholar 

  23. Nordström, T. et al. Comparison between the four-kallikrein panel and prostate health index for predicting prostate cancer. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2014.08.010.

  24. Busetto, G. M. et al. Prostate cancer gene 3 and multiparametric magnetic resonance can reduce unnecessary biopsies: decision curve analysis to evaluate predictive models. Urology 82, 1355–1360 (2013).

    Article  Google Scholar 

  25. Lopez-Corona, E. et al. A nomogram for predicting a positive repeat prostate biopsy in patients with a previous negative biopsy session. J. Urol. 170, 1184–1188 (2003).

    Article  Google Scholar 

  26. Moussa, A. S., Jones, J. S., Yu, C., Fareed, K. & Kattan, M. W. Development and validation of a nomogram for predicting a positive repeat prostate biopsy in patients with a previous negative biopsy session in the era of extended prostate sampling. BJU Int. 106, 1309–1314 (2010).

    Article  Google Scholar 

  27. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  Google Scholar 

  28. Gittelman, M. C. et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J. Urol. 190, 64–69 (2013).

    Article  CAS  Google Scholar 

  29. Aubin, S. M. et al. PCA3 molecular urine test for predicting repeat prostate biopsy outcome in populations at risk: validation in the placebo arm of the dutasteride REDUCE trial. J. Urol. 184, 1947–1952 (2010).

    Article  Google Scholar 

  30. Auprich, M. et al. A comparative performance analysis of total prostate-specific antigen, percentage free prostate-specific antigen, prostate-specific antigen velocity and urinary prostate cancer gene 3 in the first, second and third repeat prostate biopsy. BJU Int. 109, 1627–1635 (2012).

    Article  CAS  Google Scholar 

  31. Wei, J. T. et al. Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J. Clin. Oncol. 32, 4066–4072 (2014).

    Article  CAS  Google Scholar 

  32. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    Article  Google Scholar 

  33. Ochiai, A. et al. Clinical utility of the prostate cancer gene 3 (PCA3) urine assay in Japanese men undergoing prostate biopsy. BJU Int. 111, 928–933 (2013).

    Article  CAS  Google Scholar 

  34. van Poppel, H. et al. The relationship between prostate cancer gene 3 (PCA3) and prostate cancer significance. BJU Int. 109, 360–366 (2012).

    Article  Google Scholar 

  35. De Luca, S. et al. Biopsy and radical prostatectomy pathological patterns influence prostate cancer gene 3 (PCA3) score. Anticancer Res. 33, 4657–4662 (2013).

    PubMed  Google Scholar 

  36. Whitman, E. J. et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J. Urol. 180, 1975–1978 (2008).

    Article  Google Scholar 

  37. Epstein, J. I., Walsh, P. C., Carmichael, M. & Brendler, C. B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271, 368–374 (1994).

    Article  CAS  Google Scholar 

  38. Augustin, H., Mayrhofer, K., Pummer, K. & Mannweiler, S. Relationship between prostate cancer gene 3 (PCA3) and characteristics of tumor aggressiveness. Prostate 73, 203–210 (2013).

    Article  CAS  Google Scholar 

  39. Vlaeminck-Guillem, V. et al. Urinary PCA3 score predicts prostate cancer multifocality. J. Urol. 185, 1234–1239 (2011).

    Article  Google Scholar 

  40. Liss, M. A. et al. PCA3 molecular urine assay for prostate cancer: association with pathologic features and impact of collection protocols. World J. Urol. 29, 683–688 (2011).

    Article  Google Scholar 

  41. Mehra, R. et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol. 20, 538–544 (2007).

    Article  CAS  Google Scholar 

  42. Laxman, B. et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 8, 885–888 (2006).

    Article  CAS  Google Scholar 

  43. Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).

    Article  CAS  Google Scholar 

  44. Hessels, D. et al. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res. 13, 5103–5108 (2007).

    Article  CAS  Google Scholar 

  45. Leyten, G. H. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur. Urol. 65, 534–542 (2014).

    Article  Google Scholar 

  46. Roobol, M. J. et al. Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. Eur. Urol. 58, 475–481 (2010).

    Article  CAS  Google Scholar 

  47. Pepe, P., Fraggetta, F., Galia, A., Skonieczny, G. & Aragona, F. PCA3 score and prostate cancer diagnosis at repeated saturation biopsy. Which cut-off: 20 or 35? Int. Braz. J. Urol. 38, 489–495 (2012).

    Article  Google Scholar 

  48. Vlaeminck-Guillem, V. et al. Chronic prostatitis does not influence urinary PCA3 score. Prostate 72, 549–554 (2012).

    Article  CAS  Google Scholar 

  49. Magi-Galluzzi, C. et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71, 489–497 (2011).

    Article  CAS  Google Scholar 

  50. Damaschke, N. A. et al. Frequent disruption of chromodomain helicase DNA-binding protein 8 (CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia 16, 1018–1027 (2014).

    Article  CAS  Google Scholar 

  51. Damaschke, N. A. et al. Epigenetic susceptibility factors for prostate cancer with aging. Prostate 73, 1721–1730 (2013).

    Article  CAS  Google Scholar 

  52. Yang, B. et al. Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer. Neoplasia 15, 399–408 (2013).

    Article  CAS  Google Scholar 

  53. Truong, M. et al. Using the epigenetic field defect to detect prostate cancer in biopsy negative patients. J. Urol. 189, 2335–2341 (2013).

    Article  Google Scholar 

  54. ConfirmMDx for Prostate Cancer. mdxhealth[online], (2015).

  55. Stewart, G. D. et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J. Urol. 189, 1110–1116 (2013).

    Article  Google Scholar 

  56. Partin, A. W. et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J. Urol. 192, 1081–1087 (2014).

    Article  Google Scholar 

  57. The Prostate Core Mitomic Test Now You Can Know. MDNA Life Sciences[online], (2015).

  58. Maki, J. et al. Mitochondrial genome deletion aids in the identification of false- and true-negative prostate needle core biopsy specimens. Am. J. Clin. Pathol. 129, 57–66 (2008).

    Article  CAS  Google Scholar 

  59. Robinson, K. et al. Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay. Prostate Cancer Prostatic Dis. 13, 126–131 (2010).

    Article  CAS  Google Scholar 

  60. Van der Auwera, I. et al. Quantitative assessment of DNA hypermethylation in the inflammatory and non-inflammatory breast cancer phenotypes. Cancer Biol. Ther. 8, 2252–2259 (2009).

    Article  Google Scholar 

  61. Walton Diaz, A. et al. Use of serial multiparametric magnetic resonance imaging in the management of patients with prostate cancer on active surveillance. Urol. Oncol. 33, e1–e7 (2015).

    Article  Google Scholar 

  62. de Rooij, M., Hamoen, E. H., Fütterer, J. J., Barentsz, J. O. & Rovers, M. M. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am. J. Roentgenol. 202, 343–351 (2014).

    Article  Google Scholar 

  63. Sciarra, A. et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin. Cancer Res. 16, 1875–1883 (2010).

    Article  CAS  Google Scholar 

  64. Le, J. D. et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur. Urol. 67, 569–576 (2015).

    Article  Google Scholar 

  65. Isebaert, S. et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J. Magn. Reson. Imaging 37, 1392–1401 (2013).

    Article  Google Scholar 

  66. Delongchamps, N. B. et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 107, 1411–1418 (2011).

    Article  Google Scholar 

  67. Padhani, A. R. Integrating multiparametric prostate MRI into clinical practice. Cancer Imaging 11, S27–S37 (2011).

    Article  Google Scholar 

  68. Oto, A. et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257, 715–723 (2010).

    Article  Google Scholar 

  69. Hoeks, C. M. et al. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266, 207–217 (2013).

    Article  Google Scholar 

  70. Jung, S. I. et al. Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology 269, 493–503 (2013).

    Article  Google Scholar 

  71. Singh, A. K. et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 101, 841–845 (2008).

    Article  Google Scholar 

  72. Siddiqui, M. M. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313, 390–397 (2015).

    Article  CAS  Google Scholar 

  73. Salami, S. S. et al. In patients with a previous negative prostate biopsy and a suspicious lesion on MRI, is a 12-core biopsy still necessary in addition to a targeted biopsy? BJU Int. 115, 562–570 (2015).

    Article  Google Scholar 

  74. Yang, C. R. et al. Free / total prostate specific antigen ratio for prostate cancer detection: a prospective blind study. Anticancer Res. 25, 2439–2443 (2005).

    PubMed  Google Scholar 

  75. Yuan, J. J. et al. Effects of rectal examination, prostatic massage, ultrasonography and needle biopsy on serum prostate specific antigen levels. J. Urol. 147, 810–814 (1992).

    Article  CAS  Google Scholar 

  76. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Article  CAS  Google Scholar 

  77. Jentzmik, F. et al. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 185, 706–711 (2011).

    Article  CAS  Google Scholar 

  78. Truong, M., Yang, B. & Jarrard, D. F. Toward the detection of prostate cancer in urine: a critical analysis. J. Urol. 189, 422–429 (2013).

    Article  CAS  Google Scholar 

  79. Aubry, W. Budget impact model: epigenetic assay can help avoid unnecessary repeated prostate biopsies and reduce healthcare spending. Am. Health Drug Benefits 6, 15–24 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a training grant T32 from the US National Institute of Health (5T32CA009614-24) (M.L.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.L.B. and D.F.J. researched data and made significant contributions to manuscript writing. All other authors contributed to writing, reviewing, and editing of this article prior to submission.

Corresponding author

Correspondence to David F. Jarrard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blute, M., Abel, E., Downs, T. et al. Addressing the need for repeat prostate biopsy: new technology and approaches. Nat Rev Urol 12, 435–444 (2015). https://doi.org/10.1038/nrurol.2015.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.159

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer