Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rethinking prostate cancer screening: could MRI be an alternative screening test?

Abstract

In the past decade rigorous debate has taken place about population-based screening for prostate cancer. Although screening by serum PSA levels can reduce prostate cancer-specific mortality, it is unclear whether the benefits outweigh the risks of false-positive results and overdiagnosis of insignificant prostate cancer, and it is not recommended for population-based screening. MRI screening for prostate cancer has the potential to be analogous to mammography for breast cancer or low-dose CT for lung cancer. A number of potential barriers and technical challenges need to be overcome in order to implement such a programme. We discuss different approaches to MRI screening that could address these challenges, including abbreviated MRI protocols, targeted MRI screening, longer rescreening intervals and a multi-modal screening pathway. These approaches need further investigation, and we propose a phased stepwise research framework to ensure proper evaluation of the use of a fast MRI examination as a screening test for prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patient with a false-negative PSA test and clinically significant prostate cancer on MRI.
Fig. 2: Patient with a false-positive PSA and a non-suspicious MRI.
Fig. 3: Cost-effectiveness of an MRI screening programme.
Fig. 4: An example of a multi-modal screening pathway that combines a blood-based biomarker with a screening MRI.
Fig. 5: CanTest framework for evaluating diagnostic strategies for the early detection of cancer: research methods and designs.

Similar content being viewed by others

References

  1. Pinsky, P. F. et al. Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 123, 592–599 (2017).

    PubMed  Google Scholar 

  2. Hugosson, J. et al. A 16-yr follow-up of the European randomized study of screening for prostate cancer. Eur. Urol. 76, 43–51 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Carroll, P. H. & Mohler, J. L. NCCN guidelines updates: prostate cancer and prostate cancer early detection. J. Natl Compr. Canc. Netw. 16, 620–623 (2018).

    PubMed  Google Scholar 

  4. US Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task Force Recommendation Statement. JAMA 319, 1901–1913 (2018).

    Google Scholar 

  5. UK National Screening Committee. The UK NSC recommendation on prostate cancer screening/PSA testing in men over the age of 50 https://legacyscreening.phe.org.uk/prostatecancer (2018).

  6. Gandaglia, G. et al. Structured population-based prostate-specific antigen screening for prostate cancer: the European Association of Urology position in 2019. Eur. Urol. 76, 142–150 (2019).

    PubMed  Google Scholar 

  7. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    PubMed  Google Scholar 

  8. National Institute for Health and Care Excellence. Prostate cancer: diagnosis and management. BJU Int. 124, 9–26 (2019).

    Google Scholar 

  9. Powell, I. J., Bock, C. H., Ruterbusch, J. J. & Sakr, W. Evidence supports a faster growth rate and/or earlier transformation to clinically significant prostate cancer in black than in white American men, and influences racial progression and mortality disparity. J. Urol. 183, 1792–1797 (2010).

    PubMed  Google Scholar 

  10. Ahmed, H. U. et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J. Urol. 186, 458–464 (2011).

    PubMed  Google Scholar 

  11. Epstein, J. I., Walsh, P. C., Carmichael, M. & Brendler, C. B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271, 368–374 (1994).

    CAS  PubMed  Google Scholar 

  12. Grönberg, H. et al. Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol. 16, 1667–1676 (2015).

    PubMed  Google Scholar 

  13. Verbeek, J. F. M. et al. Reducing unnecessary biopsies while detecting clinically significant prostate cancer including cribriform growth with the ERSPC Rotterdam risk calculator and 4Kscore. Urol. Oncol. 37, 138–144 (2019).

    PubMed  Google Scholar 

  14. Chen, R. C. et al. Active surveillance for the management of localized prostate cancer (cancer care Ontario guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. 34, 2182–2190 (2016).

    PubMed  Google Scholar 

  15. Bill-Axelson, A. et al. Radical prostatectomy or watchful waiting in prostate cancer — 29-year follow-up. N. Engl. J. Med. 379, 2319–2329 (2018).

    PubMed  Google Scholar 

  16. Public Health England. Criteria for appraising the viability, effectiveness and appropriateness of a screening programme https://www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes/criteria-for-appraising-the-viability-effectiveness-and-appropriateness-of-a-screening-programme (2015).

  17. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    PubMed  Google Scholar 

  18. Thompson, I. M. et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 294, 66–70 (2005).

    CAS  PubMed  Google Scholar 

  19. Martin, R. M. et al. Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality. JAMA 319, 883–895 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Lundgren, P.-O., Kjellman, A., Norming, U. & Gustafsson, O. Long-term outcome of a single intervention population based prostate cancer screening study. J. Urol. 200, 82–88 (2018).

    PubMed  Google Scholar 

  21. Sandblom, G., Varenhorst, E., Löfman, O., Rosell, J. & Carlsson, P. Clinical consequences of screening for prostate cancer: 15 years follow-up of a randomised controlled trial in Sweden. Eur. Urol. 46, 717–724 (2004).

    PubMed  Google Scholar 

  22. Sandblom, G., Varenhorst, E., Rosell, J., Lofman, O. & Carlsson, P. Randomised prostate cancer screening trial: 20 year follow-up. BMJ 342, d1539 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Labrie, F. et al. Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate 59, 311–318 (2004).

    PubMed  Google Scholar 

  24. Ilic, D., Neuberger, M. M., Djulbegovic, M. & Dahm, P. Screening for prostate cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004720.pub3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ilic, D. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362, k3519 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Marmot, M. G. et al. The benefits and harms of breast cancer screening: an independent review: a report jointly commissioned by Cancer Research UK and the Department of Health (England) October 2012. Br. J. Cancer 108, 2205–2240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, G. H.-M. et al. The impact of interscreening interval and age on prostate cancer screening with prostate-specific antigen. Eur. Urol. 61, 1011–1018 (2012).

    PubMed  Google Scholar 

  28. Kilpeläinen, T. P. et al. False-positive screening results in the European randomized study of screening for prostate cancer. Eur. J. Cancer 47, 2698–2705 (2011).

    PubMed  Google Scholar 

  29. Borghesi, M. et al. Complications after systematic, random, and image-guided prostate biopsy. Eur. Urol. 71, 353–365 (2017).

    PubMed  Google Scholar 

  30. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    PubMed  Google Scholar 

  31. Raaijmakers, R., Kirkels, W. J., Roobol, M. J., Wildhagen, M. F. & Schrder, F. H. Complication rates and risk factors of 5802 transrectal ultrasound-guided sextant biopsies of the prostate within a population-based screening program. Urology 60, 826–830 (2002).

    PubMed  Google Scholar 

  32. Rosario, D. J. et al. Short term outcomes of prostate biopsy in men tested for cancer by prostate specific antigen: prospective evaluation within ProtecT study. BMJ 344, d7894 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Lahdensuo, K. et al. Increase of prostate biopsy-related bacteremic complications in southern Finland, 2005–2013: a population-based analysis. Prostate Cancer Prostatic Dis. 19, 417–422 (2016).

    CAS  PubMed  Google Scholar 

  34. Mkinen, T., Auvinen, A., Hakama, M., Stenman, U.-H. Å. & Tammela, T. L. J. Acceptability and complications of prostate biopsy in population-based PSA screening versus routine clinical practice: a prospective, controlled study. Urology 60, 846–850 (2002).

    PubMed  Google Scholar 

  35. Draisma, G. et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J. Natl Cancer Inst. 101, 374–383 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Donovan, J. L. et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 375, 1425–1437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Heijnsdijk, E. A. M. et al. Quality-of-life effects of prostate-specific antigen screening. N. Engl. J. Med. 367, 595–605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tosoian, J. J., Carter, H. B., Lepor, A. & Loeb, S. Active surveillance for prostate cancer: current evidence and contemporary state of practice. Nat. Rev. Urol. 13, 205–215 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Loeb, S. et al. Uptake of active surveillance for very-low-risk prostate cancer in Sweden. JAMA Oncol. 3, 1393–1398 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Sampurno, F. et al. Quality of care achievements of the prostate cancer outcomes registry — Victoria. Med. J. Aust. 204, 319–319 (2016).

    PubMed  Google Scholar 

  41. Guy, D. et al. Diagnosis, referral, and primary treatment decisions in newly diagnosed prostate cancer patients in a multidisciplinary diagnostic assessment program. Can. Urol. Assoc. J. 10, 120–125 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Cooperberg, M. R. & Carroll, P. R. Trends in management for patients with localized prostate cancer, 1990–2013. JAMA 314, 80–82 (2015).

    CAS  PubMed  Google Scholar 

  43. Bandini, M. et al. Increasing rate of noninterventional treatment management in localized prostate cancer candidates for active surveillance: a North American population-based study. Clin. Genitourin. Cancer 17, 72–78.e4 (2019).

    PubMed  Google Scholar 

  44. Kinsella, N. et al. Factors influencing men’s choice of and adherence to active surveillance for low-risk prostate cancer: a mixed-method systematic review. Eur. Urol. 74, 261–280 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Rastinehad, A. R. et al. Comparison of multiparametric MRI scoring systems and the impact on cancer detection in patients undergoing MR US fusion guided prostate biopsies. PLoS One 10, e0143404 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Hamoen, E. H. J., De Rooij, M., Witjes, J. A., Barentsz, J. O. & Rovers, M. M. Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur. Urol. 67, 1112–1121 (2015).

    PubMed  Google Scholar 

  48. Woo, S., Suh, C. H., Kim, S. Y., Cho, J. Y. & Kim, S. H. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Eur. Urol. 72, 177–188 (2017).

    PubMed  Google Scholar 

  49. Drost, F. J. H. et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD012663.pub2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Norris, Joseph M. et al. What type of prostate cancer is systematically overlooked by multiparametric magnetic resonance imaging? An analysis from the PROMIS cohort. Eur. Urol. https://doi.org/10.1016/j.eururo.2020.04.029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Leeflang, M. M., Bossuyt, P. M. & Irwig, L. Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis. J. Clin. Epidemiol. 62, 5–12 (2009).

    PubMed  Google Scholar 

  53. Nam, R. K. et al. A pilot study to evaluate the role of magnetic resonance imaging for prostate cancer screening in the general population. J. Urol. 196, 361–366 (2016).

    PubMed  Google Scholar 

  54. Andriole, G. L. et al. Prostate cancer screening in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial: findings from the initial screening round of a randomized trial. J. Natl Cancer Inst. 97, 433–438 (2005).

    PubMed  Google Scholar 

  55. Alberts, A. R. et al. Characteristics of prostate cancer found at fifth screening in the European randomized study of screening for prostate cancer Rotterdam: can we selectively detect high-grade prostate cancer with upfront multivariable risk stratification and magnetic resonance imaging. Eur. Urol. 73, 343–350 (2018).

    PubMed  Google Scholar 

  56. Rouvière, O. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

    PubMed  Google Scholar 

  57. Miah, S. et al. A multicentre analysis of the detection of clinically significant prostate cancer following transperineal image-fusion targeted and nontargeted systematic prostate biopsy in men at risk. Eur. Urol. Oncol. 3, 262–269 (2020).

    PubMed  Google Scholar 

  58. Van Der Marel, J. et al. The increased detection of cervical intraepithelial neoplasia when using a second biopsy at colposcopy. Gynecol. Oncol. 135, 201–207 (2014).

    PubMed  Google Scholar 

  59. Lehman, C. D. et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N. Engl. J. Med. 356, 1295–1303 (2007).

    CAS  PubMed  Google Scholar 

  60. Bernard, J. R. et al. In newly diagnosed breast cancer, screening MRI of the contralateral breast detects mammographically occult cancer, even in elderly women: the Mayo Clinic in Florida experience. Breast J. 16, 118–126 (2010).

    PubMed  Google Scholar 

  61. King, T. A. et al. Occult malignancy in patients undergoing contralateral prophylactic mastectomy. Ann. Surg. 254, 2–7 (2011).

    PubMed  Google Scholar 

  62. Verbeek, J. F. M. & Roobol, M. J. What is an acceptable false negative rate in the detection of prostate cancer? Transl Androl. Urol. 7, 54–60 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Thompson, I. M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    CAS  PubMed  Google Scholar 

  64. Brizmohun Appayya, M. et al. National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection — recommendations from a UK consensus meeting. BJU Int. 122, 13–25 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Turkbey, B. et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76, 340–351 (2019).

    PubMed  Google Scholar 

  66. Catalona, W. J. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    CAS  PubMed  Google Scholar 

  67. Mottet, N. et al. EAU–ESTRO–ESUR–SIOG guidelines on prostate cancer https://uroweb.org/wp-content/uploads/EAU-ESUR-ESTRO-SIOG-Guidelines-on-Prostate-Cancer-large-text-V2.pdf (2018).

  68. Nagler, H. M. et al. Digital rectal examination is barrier to population-based prostate cancer screening. Urology 65, 1137–1140 (2005).

    PubMed  Google Scholar 

  69. Teo, C. H., Ng, C. J., Booth, A. & White, A. Barriers and facilitators to health screening in men: a systematic review. Soc. Sci. Med. 165, 168–176 (2016).

    PubMed  Google Scholar 

  70. Lee, D. J., Consedine, N. S. & Spencer, B. A. Barriers and facilitators to digital rectal examination screening among African–American and African–Caribbean men. Urology 77, 891–898 (2011).

    PubMed  Google Scholar 

  71. Odedina, F. T. et al. Prostate cancer disparities in black men of African descent: a comparative literature review of prostate cancer burden among black men in the United States, Caribbean, United Kingdom, and West Africa. Infect. Agent. Cancer 4, S2 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    PubMed  Google Scholar 

  73. Schröder, F. H. et al. Screening and prostate cancer mortality: results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up. Lancet 384, 2027–2035 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Austin, K. L. et al. Perceived barriers to flexible sigmoidoscopy screening for colorectal cancer among UK ethnic minority groups: a qualitative study. J. Med. Screen. 16, 174–179 (2009).

    CAS  PubMed  Google Scholar 

  75. Gluecker, T. M. et al. Colorectal cancer screening with CT colonography, colonoscopy, and double-contrast barium enema examination: prospective assessment of patient perceptions and preferences. Radiology 227, 378–384 (2003).

    PubMed  Google Scholar 

  76. Edwards, J. T. et al. Colorectal neoplasia screening with CT colonography in average-risk asymptomatic subjects: community-based study. Radiology 230, 459–464 (2004).

    PubMed  Google Scholar 

  77. Grubb, R. L. et al. Prostate cancer screening in the prostate, lung, colorectal and ovarian cancer screening trial: update on findings from the initial four rounds of screening in a randomized trial. BJU Int. 102, 1524–1530 (2008).

    PubMed  Google Scholar 

  78. Otto, S. J. et al. PSA levels and cancer detection rate by centre in the European randomized study of screening for prostate cancer. Eur. J. Cancer 46, 3053–3060 (2010).

    CAS  PubMed  Google Scholar 

  79. Chang, D. T. S., Challacombe, B. & Lawrentschuk, N. Transperineal biopsy of the prostate — is this the future? Nat. Rev. Urol. 10, 690–702 (2013).

    PubMed  Google Scholar 

  80. Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    PubMed  Google Scholar 

  81. Swensen, S. J. et al. Screening for lung cancer with low-dose spiral computed tomography. Am. J. Respir. Crit. Care Med. 165, 508–513 (2002).

    PubMed  Google Scholar 

  82. Saslow, D. et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J. Clin. 57, 75–89 (2007).

    PubMed  Google Scholar 

  83. Humphrey, L. L., Helfand, M., Chan, B. S. & Woolf, S. H. Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force. Ann. Int. Med. 137, 347–360 (2002).

    PubMed  Google Scholar 

  84. Kriege, M. et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med. 351, 427–437 (2004).

    CAS  PubMed  Google Scholar 

  85. Hubbard, R. A. et al. Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography. Ann. Int. Med. 155, 481–492 (2011).

    PubMed  Google Scholar 

  86. Venderink, W. et al. Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer. Eur. Urol. 73, 353–360 (2018).

    PubMed  Google Scholar 

  87. Eldred-Evans, D. et al. Population-based prostate cancer screening using a prospective, blinded, paired screen-positive comparison of PSA and fast MRI: the IP1-PROSTAGRAM study. J. Clin. Oncol. 38 (Suppl. 15), 5113 (2020).

    Google Scholar 

  88. Barkovich, E. J., Shankar, P. R. & Westphalen, A. C. A systematic review of the existing prostate imaging reporting and data system version 2 (PI-RADSv2) literature and subset meta-analysis of PI-RADSv2 categories stratified by Gleason scores. AJR Am. J. Roentgenol. 212, 847–854 (2019).

    PubMed  Google Scholar 

  89. Thurfjell, M. G., Vitak, B., Azavedo, E., Svane, G. & Thurfjell, E. Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms. Acta Radiologica 41, 52–56 (2000).

    CAS  PubMed  Google Scholar 

  90. Fütterer, J. J. et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur. Urol. 68, 1045–1053 (2015).

    PubMed  Google Scholar 

  91. Vargas, H. A. et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur. Radiol. 26, 1606–1612 (2016).

    CAS  PubMed  Google Scholar 

  92. Schouten, M. G. et al. Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur. Urol. 71, 896–903 (2017).

    PubMed  Google Scholar 

  93. De Visschere, P. J. L. et al. What kind of prostate cancers do we miss on multiparametric magnetic resonance imaging? Eur. Radiol. 26, 1098–1107 (2016).

    PubMed  Google Scholar 

  94. Stamey, T. A. et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 71, 933–938 (1993).

    CAS  PubMed  Google Scholar 

  95. Wolters, T. et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J. Urol. 185, 121–125 (2011).

    PubMed  Google Scholar 

  96. Huang, C. C. et al. Gleason score 3+4=7 prostate cancer with minimal quantity of Gleason pattern 4 on needle biopsy is associated with low-risk tumor in radical prostatectomy specimen. Am. J. Surg. Pathol. 38, 1096–1101 (2014).

    PubMed  Google Scholar 

  97. Epstein, J. I., Allsbrook, W. C., Amin, M. B. & Egevad, L. L. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 29, 1228–1242 (2005).

    PubMed  Google Scholar 

  98. Matoso, A. & Epstein, J. I. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 74, 135–145 (2019).

    PubMed  Google Scholar 

  99. Stavrinides, V. et al. Visible disease at baseline accelerates time to exit from MRI-based active surveillance. Eur. Urol. Suppl. 18, e607 (2019).

    Google Scholar 

  100. Chin, M., Mendelson, R., Edwards, J., Foster, N. & Forbes, G. Computed tomographic colonography: prevalence, nature, and clinical significance of extracolonic findings in a community screening program. Am. J. Gastroenterol. 100, 2771–2776 (2005).

    PubMed  Google Scholar 

  101. Morgan, L., Choi, H., Reid, M., Khawaja, A. & Mazzone, P. J. Frequency of incidental findings and subsequent evaluation in low-dose computed tomographic scans for lung cancer screening. Ann. Am. Thorac. Soc. 14, 1450–1456 (2017).

    PubMed  Google Scholar 

  102. Barentsz, J. O. et al. Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur. Urol. 69, 41–49 (2016).

    PubMed  Google Scholar 

  103. Brown, L. C. et al. Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol. Assess. 22, 1–176 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Zalis, M. E. et al. CT colonography reporting and data system: a consensus proposal. Radiology 236, 3–9 (2005).

    PubMed  Google Scholar 

  105. Rosenkrantz, A. B. et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280, 793–804 (2016).

    PubMed  Google Scholar 

  106. Elmore, J. G., Wells, C. K., Lee, C. H., Howard, D. H. & Feinstein, A. R. Variability in radiologists’ interpretations of mammograms. N. Engl. J. Med. 331, 1493–1499 (1994).

    CAS  PubMed  Google Scholar 

  107. Sickles, E. A., Wolverton, D. E. & Dee, K. E. Performance parameters for screening and diagnostic mammography: specialist and general radiologists. Radiology 224, 861–869 (2002).

    PubMed  Google Scholar 

  108. Marra, G. et al. Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World J. Urol. 37, 277–287 (2019).

    PubMed  Google Scholar 

  109. Hunt, C. H., Hartman, R. P. & Hesley, G. K. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR Am. J. Roentgenol. 193, 1124–1127 (2009).

    PubMed  Google Scholar 

  110. Kanda, T. et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276, 228–232 (2015).

    PubMed  Google Scholar 

  111. Padhani, A. R. et al. Prostate imaging-reporting and data system steering committee: PI-RADS v2 status update and future directions. Eur. Urol. 75, 385–396 (2019).

    PubMed  Google Scholar 

  112. Barentsz, J. O. et al. Reply to Erik Rud and Eduard Baco’s Letter to the Editor re: Re: Jeffrey C. Weinreb, Jelle O. Barentsz, Peter L. Choyke, et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur Urol 2016;69:16–40. Eur. Urol. 70, e137–e138 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Tan, C. H., Hobbs, B. P., Wei, W. & Kundra, V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. AJR Am. J. Roentgenol. 204, W439–W448 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Haghighi, M., Shah, S., Taneja, S. S. & Rosenkrantz, A. B. Prostate cancer: diffusion-weighted imaging versus dynamic-contrast enhanced imaging for tumor localization — a meta-analysis. J. Comput. Assist. Tomog. 37, 980–988 (2013).

    Google Scholar 

  115. Woo, S. et al. Head-to-head comparison between biparametric and multiparametric MRI for the diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am. J. Roentgenol. 211, W226–W241 (2018).

    PubMed  Google Scholar 

  116. Niu, X.-K. et al. Diagnostic performance of biparametric MRI for detection of prostate cancer: a systematic review and meta-analysis. AJR Am. J. Roentgenol. 211, 369–378 (2018).

    PubMed  Google Scholar 

  117. Kang, Z. et al. Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am. J. Roentgenol. 212, 357–365 (2018).

    PubMed  Google Scholar 

  118. Chen, Z. et al. Accuracy of dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate cancer: systematic review and meta-analysis. Oncotarget 8, 77975–77989 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Rais-Bahrami, S. et al. Diagnostic value of biparametric magnetic resonance imaging (MRI) as an adjunct to prostate-specific antigen (PSA)-based detection of prostate cancer in men without prior biopsies. BJU Int. 115, 381–388 (2015).

    PubMed  Google Scholar 

  120. Jambor, I. et al. Validation of IMPROD biparametric MRI in men with clinically suspected prostate cancer: a prospective multi-institutional trial. PLoS Med. 16, e1002813 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Weiss, J. et al. Implementation of a 5-minute magnetic resonance imaging screening protocol for prostate cancer in men with elevated prostate-specific antigen before biopsy. Invest. Radiol. 53, 186–190 (2018).

    PubMed  Google Scholar 

  122. Van Der Leest, M. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur. Urol. 75, 570–578 (2019).

    PubMed  Google Scholar 

  123. NHS Improvement. National tariff payment system https://improvement.nhs.uk/resources/national-tariff (2019).

  124. NHS Improvement. Archived reference costs https://improvement.nhs.uk/resources/reference-costs (2020).

  125. Griebsch, I. et al. Cost-effectiveness of screening with contrast enhanced magnetic resonance imaging vs x-ray mammography of women at a high familial risk of breast cancer. Br. J. Cancer 95, 801–810 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. UK National Screening Committee. The UK NSC recommendation on bowel cancer screening https://legacyscreening.phe.org.uk/bowelcancer (2018).

  127. Ministero della Salute. Screening per il cancro del colon-retto http://www.salute.gov.it/portale/salute/p1_5.jsp?lingua=italiano&id=24&area=Screening (2018).

  128. European Colorectal Cancer Screening Guidelines Working Group. European guidelines for quality assurance in colorectal cancer screening and diagnosis: overview and introduction to the full supplement publication. Endoscopy 45, 51–59 (2012).

    PubMed Central  Google Scholar 

  129. Rex, D. K. et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Am. J. Gastroenterol. 112, 1016–1030 (2017).

    PubMed  Google Scholar 

  130. Dobre Programy Zdrowotne. Narodowy program zwalczania chorób nowotworowych: założenia i cele operacyjne 2006–2015. http://www.dobreprogramyzdrowotne.pl/uploaded/file/zalozenia_ustawy_o_npzchn.pdf (2015).

  131. Sonnenberg, A. Cost-effectiveness of colonoscopy in screening for colorectal cancer. Ann. Intern. Med. 133, 573–584 (2000).

    CAS  PubMed  Google Scholar 

  132. Department of Health and Social Care. NHS payment by results 2010–11 national tariff information https://data.gov.uk/dataset/96d530ef-8fa5-4167-8863-5b6e0d69bcfb/nhs-payment-by-results-2010-11-national-tariff-information (2014).

  133. de Rooij, M. et al. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur. Urol. 66, 430–436 (2014).

    PubMed  Google Scholar 

  134. Pastorino, U. et al. Early lung-cancer detection with spiral CT and positron emission tomography in heavy smokers: 2-year results. Lancet 362, 593–597 (2003).

    PubMed  Google Scholar 

  135. Rosenkrantz, A. B., Lepor, H., Huang, W. C. & Taneja, S. S. Practical barriers to obtaining pre-biopsy prostate MRI: assessment in over 1,500 consecutive men undergoing prostate biopsy in a single urologic practice. Urol. Int. 97, 247–248 (2016).

    PubMed  Google Scholar 

  136. Quentin, M. et al. Prospective evaluation of magnetic resonance imaging guided in-bore prostate biopsy versus systematic transrectal ultrasound guided prostate biopsy in biopsy naïve men with elevated prostate specific antigen. J. Urol. 192, 1374–1379 (2014).

    PubMed  Google Scholar 

  137. Caplan, L. S., Blackman, D., Nadel, M. & Monticciolo, D. L. Coding mammograms using the classification “probably benign finding–short interval follow-up suggested”. AJR Am. J. Roentgenol. 172, 339–342 (1999).

    CAS  PubMed  Google Scholar 

  138. Liberman, L. & Menell, J. H. Breast imaging reporting and data system (BI-RADS). Radiol. Clin. North. Am. 40, 409–430 (2002).

    PubMed  Google Scholar 

  139. McKee, B. J., Regis, S. M., McKee, A. B., Flacke, S. & Wald, C. Performance of ACR lung-RADS in a clinical CT lung screening program. J. Am. Coll. Radiol. 13, R25–R29 (2016).

    PubMed  Google Scholar 

  140. Varas, X., Leborgne, F. & Leborgne, J. H. Nonpalpable, probably benign lesions: role of follow-up mammography. Radiology 184, 409–414 (1992).

    CAS  PubMed  Google Scholar 

  141. Varas, X. et al. Revisiting the mammographic follow-up of BI-RADS category 3 lesions. AJR Am. J. Roentgenol. 179, 691–695 (2002).

    PubMed  Google Scholar 

  142. Heywang-Köbrunner, S. H., Viehweg, P., Heinig, A. & Küchler, C. Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur. J. Radiol. 24, 94–108 (1997).

    PubMed  Google Scholar 

  143. Ribli, D., Horváth, A., Unger, Z., Pollner, P. & Csabai, I. Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8, 4165 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Kumar, D., Wong, A. & Clausi, D. A. Lung nodule classification using deep features in CT images. IEEE https://ieeexplore.ieee.org/document/7158331 (2015).

  145. Heijnsdijk, E. et al. Cost-effectiveness of prostate cancer screening: a simulation study based on ERSPC data. J. Natl Cancer Inst. 107, 366 (2015).

    CAS  PubMed  Google Scholar 

  146. Albertsen, P. C. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA 293, 2095–2101 (2005).

    CAS  PubMed  Google Scholar 

  147. Johansson, J.-E. et al. Natural history of early, localized prostate cancer. JAMA 291, 2713–2719 (2004).

    CAS  PubMed  Google Scholar 

  148. Bill-Axelson, A. et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N. Engl. J. Med. 352, 1977–1984 (2005).

    CAS  PubMed  Google Scholar 

  149. Wolf, A. M. D. et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin. 68, 250–281 (2018).

    PubMed  Google Scholar 

  150. Sharaf, R. N. & Ladabaum, U. Comparative effectiveness and cost-effectiveness of screening colonoscopy vs. sigmoidoscopy and alternative strategies. Am. J. Gastroenterol. 108, 120–132 (2013).

    PubMed  Google Scholar 

  151. Office for National Statistics. Population estimates for the UK, England and Wales, Scotland and Northern Ireland: mid-2018 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/mid2018 (2018).

  152. Altman, D. G. & Bland, J. M. Statistics notes: diagnostic tests 2: predictive values. BMJ 309, 102 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Smith, R. A. et al. Cancer screening in the United States, 2017: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 67, 100–121 (2017).

    PubMed  Google Scholar 

  154. Chen, Y. C., Page, J. H., Chen, R. & Giovannucci, E. Family history of prostate and breast cancer and the risk of prostate cancer in the PSA era. Prostate 68, 1582–1591 (2008).

    PubMed  PubMed Central  Google Scholar 

  155. Mäkinen, T. et al. Family history and prostate cancer screening with prostate-specific antigen. J. Clin. Oncol. 20, 2658–2663 (2002).

    PubMed  Google Scholar 

  156. McWhorter, W. et al. A screening study of prostate cancer in high risk families. J. Urol. 148, 826–828 (1992).

    CAS  PubMed  Google Scholar 

  157. Neuhausen, S., Skolnick, M. & Cannon-Albright, L. Familial prostate cancer studies in Utah. Br. J. Urol. 79, 15–20 (1997).

    PubMed  Google Scholar 

  158. Saarimäki, L. et al. Family history in the Finnish prostate cancer screening trial. Int. J. Cancer 136, 2172–2177 (2015).

    PubMed  Google Scholar 

  159. Randazzo, M. et al. A positive family history as a risk factor for prostate cancer in a population-based study with organised prostate-specific antigen screening: results of the Swiss European randomised study of screening for prostate cancer (ERSPC, Aarau). BJU Int. 117, 576–583 (2016).

    PubMed  Google Scholar 

  160. Gann, P. H. Risk factors for prostate cancer. Rev. Urol. 4, S3–S10 (2002).

    PubMed  PubMed Central  Google Scholar 

  161. Shenoy, D., Packianathan, S., Chen, A. M. & Vijayakumar, S. Do African–American men need separate prostate cancer screening guidelines? BMC Urol. 16, 19 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Melia, J., Moss, S. & Johns, L. Rates of prostate-specific antigen testing in general practice in England and Wales in asymptomatic and symptomatic patients: a cross-sectional study. BJU Int. 94, 51–56 (2004).

    PubMed  Google Scholar 

  163. Gray, E. P., Teare, M. D., Stevens, J. & Archer, R. Risk prediction models for lung cancer: a systematic review. Clin. Lung Cancer 17, 95–106 (2015).

    PubMed  Google Scholar 

  164. Grönberg, H. Prostate cancer epidemiology. Lancet 361, 859–864 (2003).

    PubMed  Google Scholar 

  165. Pashayan, N. et al. Reducing overdiagnosis by polygenic risk-stratified screening: findings from the Finnish section of the ERSPC. Br. J. Cancer 113, 1086–1093 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Seibert, T. M. et al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ 360, j5757 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. Carlsson, S. et al. Influence of blood prostate specific antigen levels at age 60 on benefits and harms of prostate cancer screening: population based cohort study. BMJ 348, g2296 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. Grenabo Bergdahl, A. et al. Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the Göteborg randomised screening trial. Eur. Urol. 70, 566–573 (2015).

    PubMed  Google Scholar 

  169. International Standard Randomised Controlled Trial Number Registry. ISRCTN.com http://www.isrctn.com/ISRCTN94604465 (2020).

  170. Hendriks, R. J., Van Oort, I. M. & Schalken, J. A. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis. 20, 12–19 (2017).

    CAS  PubMed  Google Scholar 

  171. Russo, G. I. et al. A systematic review and meta-analysis of the diagnostic accuracy of prostate health index and four-kallikrein panel score in predicting overall and high-grade prostate cancer. Clin. Genitourin. Cancer 15, 429–439.e1 (2016).

    PubMed  Google Scholar 

  172. Kim, E. H. et al. Detection of high-grade prostate cancer among PLCO participants using a prespecified four kallikrein marker panel. J. Urol. 197, 1041–1047 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. Braun, K., Sjoberg, D. D., Vickers, A. J., Lilja, H. & Bjartell, A. S. A four-kallikrein panel predicts high-grade cancer on biopsy: independent validation in a community cohort. Eur. Urol. 69, 505–511 (2016).

    PubMed  Google Scholar 

  174. Nordström, T. et al. Comparison between the four-kallikrein panel and prostate health index for predicting prostate cancer. Eur. Urol. 68, 139–146 (2015).

    PubMed  Google Scholar 

  175. De La Calle, C. et al. Multicenter evaluation of the prostate health index to detect aggressive prostate cancer in biopsy naïve men. J. Urol. 194, 65–72 (2015).

    PubMed  PubMed Central  Google Scholar 

  176. Bryant, R. J. et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the protect study. J. Natl Cancer Inst. 107, djv095 (2015).

    PubMed  PubMed Central  Google Scholar 

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03423303 (2018).

  178. Nordström, T. et al. Does a novel diagnostic pathway including blood-based risk prediction and MRI-targeted biopsies outperform prostate cancer screening using prostate-specific antigen and systematic prostate biopsies? Protocol of the randomised study STHLM3MRI. BMJ Open. 9, e027816 (2019).

    PubMed  PubMed Central  Google Scholar 

  179. Nicholson, A. et al. The clinical effectiveness and cost-effectiveness of the PROGENSA® prostate cancer antigen 3 assay and the prostate health index in the diagnosis of prostate cancer: a systematic review and economic evaluation. Health Technol. Assess. 19, 1–191 (2015).

    Google Scholar 

  180. Hendriks, R. J. et al. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection. Prostate 77, 1401–1407 (2017).

    CAS  PubMed  Google Scholar 

  181. Catalona, W. J. History of the discovery and clinical translation of prostate-specific antigen. J. Natl Cancer Inst. 1, 12–14 (2014).

    Google Scholar 

  182. Catalona, W. J. et al. What the U.S. Preventive Services Task Force missed in its prostate cancer screening recommendation. Ann. Intern. Med. 157, 137–138 (2012).

    PubMed  Google Scholar 

  183. Sirovich, B. E., Schwartz, L. M. & Woloshin, S. Screening men for prostate and colorectal cancer in the United States. JAMA 289, 1414–1420 (2003).

    PubMed  Google Scholar 

  184. Walter, F. M. et al. Evaluating diagnostic strategies for early detection of cancer: the CanTest framework. BMC Cancer 19, 586 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04063566 (2019).

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03702439 (2020).

  187. Verbeek, A. L. M. et al. Reduction of breast cancer mortality through mass screening with modern mammography. Lancet 323, 1222–1224 (1984).

    Google Scholar 

  188. Selby, J. V., Friedman, G. D., Quesenberry, C. P. & Weiss, N. S. A case–control study of screening sigmoidoscopy and mortality from colorectal cancer. N. Engl. J. Med. 326, 653–657 (1992).

    CAS  PubMed  Google Scholar 

  189. Clarke, E. A. & Anderson, T. Does screening by “pap” smears help prevent cervical cancer? A case–control study. Lancet 314, 1–4 (1979).

    Google Scholar 

  190. Graser, A. et al. Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population. Gut 58, 241–248 (2009).

    CAS  PubMed  Google Scholar 

  191. Whyte, S., Thomas, C., Kearns, B., Webster, M. & Chilcott, J. Optimising Bowel Cancer Screening Phase 1: Optimising the cost effectiveness of repeated FIT screening and screening strategies combining bowel scope and FIT screening http://eprints.whiterose.ac.uk/130839/ (University of Sheffield, 2017).

  192. Church, T. R. et al. Results of initial low-dose computed tomographic screening for lung cancer. N. Engl. J. Med. 368, 1980–1991 (2013).

    PubMed  Google Scholar 

  193. Melnikow, J. et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. preventive services task force. Ann. Int. Med. 164, 268–278 (2016).

    PubMed  Google Scholar 

  194. Porté, F. et al. CT colonography for surveillance of patients with colorectal cancer: systematic review and meta-analysis of diagnostic efficacy. Eur. Radiol. 27, 51–60 (2016).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David Eldred-Evans.

Ethics declarations

Competing interests

D.E.-E. receives research funding from The Urology Foundation, the BMA Foundation, the Royal College of Surgeons and Imperial Health Charity. M.W. has received a travel grant and a loan of a device from Zicom Biobot. The research of H.U.A. is supported by core funding from the United Kingdom’s National Institute of Health Research (NIHR) Imperial Biomedical Research Centre; he currently receives funding from the Wellcome Trust, Medical Research Council (UK), Prostate Cancer UK, Cancer Research UK, The BMA Foundation, The Urology Foundation, The Imperial Health Charity, Sonacare Inc., Trod Medical and Sophiris Biocorp for trials and studies in prostate cancer; he is a paid medical consultant for Sophiris Biocorp, Sonacare Inc. and BTG/Galil; he is a paid proctor for HIFU, cryotherapy and Rezum water vapour therapy.

Additional information

Peer review information

Nature Reviews Urology thanks A. Auvinen, D. Murphy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lead-time bias

Lead-time bias provides a false impression of improved survival from a screening test if the test detects a cancer earlier in time but the patient still dies of the disease at the same time.

Length-time bias

Length-time bias occurs if a screening test detects slower-growing cancers with a better prognosis and so appears to increase survival.

Overdiagnosis bias

Overdiagnosis bias is the maximal form of length-time bias where the cancers detected would never have caused symptoms or mortality during the individual’s lifetime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldred-Evans, D., Tam, H., Sokhi, H. et al. Rethinking prostate cancer screening: could MRI be an alternative screening test?. Nat Rev Urol 17, 526–539 (2020). https://doi.org/10.1038/s41585-020-0356-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0356-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer