Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Prostatic fibrosis, lower urinary tract symptoms, and BPH

Abstract

Lower urinary tract symptoms (LUTS)—constituting a spectrum disorder that encompasses weak stream, nocturia, and sensations of incomplete emptying and intermittent or hesitant urination—are indicative of lower urinary tract dysfunction (LUTD). LUTD is a progressive disease that can lead to bladder dysfunction if left untreated or treated ineffectively. Sequelae include urinary retention, recurrent UTI, bladder calculi, and, eventually, renal impairment. LUTD involving the prostate is associated with both ageing and inflammation. Tissue inflammation resulting from ageing, infection, or other inflammatory disease processes (for example, type 2 diabetes mellitus) is epidemiologically associated with the subsequent development of tissue fibrosis in multiple organ systems, including the prostate. Recent studies show that tissue fibrosis in the lower urinary tract is associated with LUTD, and suggest that fibrosis might be a previously unrecognized pathobiology that contributes to LUTD. Thus, antifibrotic therapeutic agents should be considered as a new approach to efficaciously treating men with LUTD, especially those who don't experience durable responses to 5α-reductase inhibitors or α-adrenergic receptor antagonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prostatic pathobiologies that contribute towards lower urinary tract dysfunction.
Figure 2: Contribution of inflammation and fibrosis to lower urinary tract dysfunction (LUTD).
Figure 3: Myofibroblast phenoconversion and the initiation of fibrosis in the prostate.

Similar content being viewed by others

References

  1. Laborde, E. E. & McVary, K. T. Medical management of lower urinary tract symptoms. Nat. Rev. Urol. 11, S19–S25 (2009).

    Google Scholar 

  2. Wei, J. T., Calhoun, E. & Jacobsen, S. J. Urologic diseases in America project: benign prostatic hyperplasia. J. Urol. 173, 1256–1261 (2005).

    Article  PubMed  Google Scholar 

  3. Kupelian, V. et al. Prevalence of lower urinary tract symptoms and effect on quality of life in a racially and ethnically diverse random sample: the Boston Area Community Health (BACH) Survey. Arch. Intern. Med. 166, 2381–2387 (2006).

    Article  PubMed  Google Scholar 

  4. Parsons, J. K., Bergstrom, J., Silberstein, J. & Barrett-Connor, E. Prevalence and characteristics of lower urinary tract symptoms in men aged > or = 80 years. Urology 72, 318–321 (2008).

    Article  PubMed  Google Scholar 

  5. Irwin, D. E., Kopp, Z. S., Agatep, B., Milsom, I. & Abrams, P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 108, 1132–1138 (2011).

    Article  PubMed  Google Scholar 

  6. Malaeb, B. S., Yu, X., McBean, A. M. & Elliott, S. P. National trends in surgical therapy for benign prostatic hyperplasia in the United States (2000–2008). Urology 79, 1111–1116 (2012).

    Article  PubMed  Google Scholar 

  7. Yu, X., Elliott, S. P., Wilt, T. J. & McBean, A. M. Practice patterns in benign prostatic hyperplasia surgical therapy: the dramatic increase in minimally invasive technologies. J. Urol. 180, 241–245 (2008).

    Article  PubMed  Google Scholar 

  8. Strope, S. A., Yang, L., Nepple, K. G., Andriole, G. L. & Owens, P. L. Population based comparative effectiveness of transurethral resection of the prostate and laser therapy for benign prostatic hyperplasia. J. Urol. 187, 1341–1345 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  9. Krambeck, A. E. et al. Effectiveness of medical and surgical therapies for lower urinary tract symptoms in the community setting. BJU Int. 110, 1332–1337 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  10. McConnell, J. D. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N. Engl. J. Med. 349, 2387–2398 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bautista, O. M. et al. Study design of the Medical Therapy of Prostatic Symptoms (MTOPS) trial. Control. Clin. Trials 24, 224–243 (2003).

    Article  PubMed  Google Scholar 

  12. Nickel, J. C., Downey, J., Young, I. & Boag, S. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int. 84, 976–981 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Robert, G. et al. Inflammation in benign prostatic hyperplasia: A 282 patients' immunohistochemical analysis. Prostate 69, 1774–1780 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Delongchamps, N. B. et al. Evaluation of prostatitis in autopsied prostates--is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J. Urol. 179, 1736–1740 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sutcliffe, S., Giovannucci, E., De Marzo, A. M., Willett, W. C. & Platz, E. A. Sexually transmitted infections, prostatitis, ejaculation frequency, and the odds of lower urinary tract symptoms. Am. J. Epidemiol. 162, 898–906 (2005).

    Article  PubMed  Google Scholar 

  16. St Sauver, J. L. & Jacobsen, S. J. Inflammatory mechanisms associated with prostatic inflammation and lower urinary tract symptoms. Curr. Prostate Rep. 6, 67–73 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  17. St Sauver, J. L. et al. Longitudinal association between prostatitis and development of benign prostatic hyperplasia. Urology 71, 475–479 (2008).

    Article  PubMed  Google Scholar 

  18. Krieger, J. N. et al. Epidemiology of prostatitis. Int. J. Antimicrob. Agents 31 (Suppl. 1), S85–S90 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Colodner, R., Eliasberg, T., Chazan, B. & Raz, R. Clinical significance of bacteriuria with low colony counts of Enterococcus species. Eur. J. Clin. Microbiol. Infect. Dis. 25, 238–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W. & Macoska, J. A. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4, 291–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Begley, L. A., Kasina, S., MacDonald, J. & Macoska, J. A. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 43, 194–199 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Begley, L. A. et al. CXCL5 promotes prostate cancer progression. Neoplasia 10, 244–254 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Begley, L. A., MacDonald, J. W., Day, M. L. & Macoska, J. A. CXCL12 activates a robust transcriptional response in human prostate epithelial cells. J. Biol. Chem. 282, 26767–26774 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishimura, F. et al. Comparison of in vitro proliferative capacity of human periodontal ligament cells in juvenile and aged donors. Oral Dis. 3, 162–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Hjelmeland, L. M., Cristofolo, V. J., Funk, W., Rakoczy, E. & Katz, M. L. Senescence of the retinal pigment epithelium. Mol. Vis. 5, 33 (1999).

    CAS  PubMed  Google Scholar 

  27. Kajstura, J. et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am. J. Pathol. 156, 813–819 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chkhotua, A. et al. Replicative senescence in organ transplantation-mechanisms and significance. Transpl. Immunol. 9, 165–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Bavik, C. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumour suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Penna, G. et al. Human benign prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated inflammation. J. Immunol. 182, 4056–4064 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Fujita, K. et al. Monocyte chemotactic protein-1 (MCP-1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia. Prostate 70, 473–481 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schauer, I. G., Ressler, S. J., Tuxhorn, J. A., Dang, T. D. & Rowley, D. R. Elevated epithelial expression of interleukin-8 correlates with myofibroblast reactive stroma in benign prostatic hyperplasia. Urology 72, 205–213 (2008).

    Article  PubMed  Google Scholar 

  34. Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

    CAS  PubMed  Google Scholar 

  35. Schauer, I. G., Ressler, S. J. & Rowley, D. R. Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate 69, 373–384 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gharaee-Kermani, M. et al. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis. PLoS ONE 7, e49278 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sarma, A. V., Parsons, J. K., McVary, K. & Wei, J. T. Diabetes and benign prostatic hyperplasia/lower urinary tract symptoms—what do we know? J. Urol. 182, S32–S37 (2009).

    Article  PubMed  Google Scholar 

  38. Michel, M. C., Mehlburger, L., Schumacher, H., Bressel, H. U. & Goepel, M. Effect of diabetes on lower urinary tract symptoms in patients with benign prostatic hyperplasia. J. Urol. 163, 1725–1729 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Morelli, A. et al. Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome. J. Steroid Biochem. Mol. Biol. 132, 80–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Azadzoi, K. M., Tarcan, T., Siroky, M. B. & Krane, R. J. Atherosclerosis-induced chronic ischemia causes bladder fibrosis and non-compliance in the rabbit. J. Urol. 161, 1626–1635 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Gharaee-Kermani, M. et al. Obesity-induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model. Prostate 73, 1123–1133 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Donath, M. Y. et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31, S161–S164 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Detlefsen, S., Sipos, B., Feyerabend, B. & Klöppel, G. Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Archiv. 447, 800–805 (2005).

    Article  PubMed  Google Scholar 

  45. Gharaee-Kermani, M., Hu, B., Phan, S. H. & Gyetko, M. R. Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGFβ signalling and the myofibroblast. Curr. Med. Chem. 16, 1400–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Scotton, C. J. & Chambers, R. C. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132, 1311–1321 (2007).

    Article  PubMed  Google Scholar 

  47. Novo, E., Valfrè di Bonzo, L., Cannito, S., Colombatto, S. & Parola, M. Hepatic myofibroblasts: A heterogeneous population of multifunctional cells in liver fibrogenesis. Int. J. Biochem. Cell Biol. 41, 2089–2093 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Frith, J., Day, C. P., Henderson, E., Burt, A. D. & Newton, J. L. Non-alcoholic fatty liver disease in older people. Gerontology 55, 607–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Rieder, F. & Fiocchi, C. Intestinal fibrosis in IBD—a dynamic, multifactorial process. Nat. Rev. Gastroenterol. Hepatol. 6, 228–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Johnston, R. D. & Logan, R. F. A. What is the peak age for onset of IBD? Inflamm. Bowel Dis. 14 (Suppl. 2), S4–S5 (2008).

    Article  PubMed  Google Scholar 

  51. Goldacre, M. J. Demography of aging and the epidemiology of gastrointestinal disorders in the elderly. Best Pract. Res. Clin. Gastroenterol. 23, 793–804 (2009).

    Article  PubMed  Google Scholar 

  52. Pohlers, D. et al. TGF-β and fibrosis in different organs — molecular pathway imprints. Biochim. Biophys. Acta 1792, 746–756 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Hinz, B. Formation and Function of the Myofibroblast during Tissue Repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hinz, B. et al. The myofibroblast. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ma, J. et al. Prostatic fibrosis is associated with lower urinary tract symptoms. J. Urol. 188, 1375–1381 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  57. Rocco, B. et al. Current status of salvage robot-assisted laparoscopic prostatectomy for radiorecurrent prostate cancer. Curr. Urol. Rep. 13, 195–201 (2012).

    Article  PubMed  Google Scholar 

  58. Crawford, E. D. & Kavanagh, B. D. The role of alpha-blockers in the management of lower urinary tract symptoms in prostate cancer patients treated with radiation therapy. Am. J. Clin. Oncol. 29, 517–523 (2006).

    Article  PubMed  Google Scholar 

  59. Rosenzweig-Bublil, N. & Abramovici, A. Stromal fibrosis reaction in rat prostates induced by alpha 1 adrenergic stimulation. J. Androl. 27, 276–284 (2006).

    Article  PubMed  Google Scholar 

  60. Delella, F. K., Lacorte, L. M., Almeida, F. L., Pai, M. D. & Felisbino, S. L. Fibrosis-related gene expression in the prostate is modulated by doxazosin treatment. Life Sci. 91, 1281–1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Guinan, P. et al. The effect of androgen deprivation on malignant and benign prostate tissue. Med. Oncol. 14, 145–152 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Roznovanu, S. L., Radulescu, D., Novac, C. & Stolnicu, S. The morphologic changes induced by hormone and radiation therapy on prostate carcinoma. Rev. Med. Chir. Soc. Med. Nat. Iasi. 109, 337–342 (2005).

    PubMed  Google Scholar 

  63. Welsh, M. et al. Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease. Endocrinology 152, 3541–3551 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed towards researching, writing, editing, discussing, and reviewing the manuscript.

Corresponding author

Correspondence to Jill A. Macoska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Nieves, J., Macoska, J. Prostatic fibrosis, lower urinary tract symptoms, and BPH. Nat Rev Urol 10, 546–550 (2013). https://doi.org/10.1038/nrurol.2013.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing