Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into the associative role of hypertension and angiotensin II receptor in lower urinary tract dysfunction

Abstract

In men, the lower urinary tract comprises the urinary bladder, urethra, and prostate, and its primary functions include urine storage and voiding. Hypertension is a condition that causes multi-organ damage and an age-dependent condition. Hypertension and the renin-angiotensin system activation are associated with the development of lower urinary tract dysfunction. Hypertensive animal models show bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. In the renin-angiotensin system, angiotensin II and the angiotensin II type 1 receptor, which are expressed in the lower urinary tract, have been implicated in the pathogenesis of lower urinary tract dysfunction. Moreover, among the several antihypertensives, renin-angiotensin system inhibitors have proven effective in human and animal models of lower urinary tract dysfunction. This review aimed to elucidate the hitherto known mechanisms underlying the development of lower urinary tract dysfunction in relation to hypertension and the angiotensin II/angiotensin II type 1 receptor axis and the effect of renin-angiotensin system inhibitors on lower urinary tract dysfunction.

Possible mechanisms through which hypertension or activation of Ang II/AT1 receptor axis causes LUTD such as bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. LUT: lower urinary tract, LUTD: lower urinary tract dysfunction, AT1: angiotensin II type 1, ACE: angiotensin-converting enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5:327–96.

    PubMed  PubMed Central  Google Scholar 

  2. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  3. (NCD-RisC) NRFC. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.

    Google Scholar 

  4. Sugaya K, Kadekawa K, Ikehara A, Nakayama T, Gakiya M, Nashiro F, et al. Influence of hypertension on lower urinary tract symptoms in benign prostatic hyperplasia. Int J Urol. 2003;10:569–74.

    PubMed  Google Scholar 

  5. Ponholzer A, Temml C, Wehrberger C, Marszalek M, Madersbacher S. The association between vascular risk factors and lower urinary tract symptoms in both sexes. Eur Urol. 2006;50:581–6.

    PubMed  Google Scholar 

  6. Ito H, Yoshiyasu T, Yamaguchi O, Yokoyama O. Male lower urinary tract symptoms: hypertension as a risk factor for storage symptoms, but not voiding symptoms. Low Urin Trac Symptoms. 2012;4:68–72.

    Google Scholar 

  7. Ohishi M, Kubozono T, Higuchi K, Akasaki Y. Hypertension, cardiovascular disease, and nocturia: a systematic review of the pathophysiological mechanisms. Hypertens Res. 2021;44:733–9.

    CAS  PubMed  Google Scholar 

  8. Paz Ocaranza M, Riquelme JA, García L, Jalil JE, Chiong M, Santos RAS, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.

    PubMed  Google Scholar 

  9. Ghatage T, Goyal SG, Dhar A, Bhat A. Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res. 2021;44:740–55.

    PubMed  PubMed Central  Google Scholar 

  10. Comiter C. Local renin-angiotensin systems in the genitourinary tract. Naunyn Schmiedebergs Arch Pharm. 2012;385:13–26.

    CAS  Google Scholar 

  11. Shimizu S. Therapeutic targets in the brain for overactive bladder: a focus on angiotensin II type 1 receptor. J Pharm Sci. 2023;153:69–72.

    CAS  Google Scholar 

  12. Takahashi K, Tanaka T, Yoshizawa Y, Fujisaki-Sueda-Sakai M, Son BK, Iijima K. Lower urinary tract symptoms and functional ability in older adults: a community-based cross-sectional study. BMJ Open. 2022;12:e054530.

    PubMed  PubMed Central  Google Scholar 

  13. Irwin DE, Kopp ZS, Agatep B, Milsom I, Abrams P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int. 2011;108:1132–8.

    PubMed  Google Scholar 

  14. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21:167–78.

    PubMed  Google Scholar 

  15. Peyronnet B, Mironska E, Chapple C, Cardozo L, Oelke M, Dmochowski R, et al. A comprehensive review of overactive bladder pathophysiology: on the way to tailored treatment. Eur Urol. 2019;75:988–1000.

    PubMed  Google Scholar 

  16. Madersbacher S, Sampson N, Culig Z. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: a mini-review. Gerontology. 2019;65:458–64.

    CAS  PubMed  Google Scholar 

  17. Arnold MJ, Gaillardetz A, Ohiokpehai J. Benign prostatic hyperplasia: rapid evidence review. Am Fam Physician. 2023;107:613–22.

    PubMed  Google Scholar 

  18. Collaborators GBPH. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2022;3:e754–e76.

    Google Scholar 

  19. Wu YH, Chueh KS, Chuang SM, Long CY, Lu JH, Juan YS. Bladder hyperactivity induced by oxidative stress and bladder ischemia: a review of treatment strategies with antioxidants. Int J Mol Sci. 2021;22:6014.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tarcan T, Choi HP, Azadzoi KM. Molecular regulation of concomitant lower urinary tract symptoms and erectile dysfunction in pelvic ischemia. Int J Mol Sci. 2022;23:15988.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimizu S, Tsounapi P, Shimizu T, Honda M, Inoue K, Dimitriadis F, et al. Lower urinary tract symptoms, benign prostatic hyperplasia/benign prostatic enlargement and erectile dysfunction: are these conditions related to vascular dysfunction? Int J Urol. 2014;21:856–64.

    PubMed  Google Scholar 

  22. Saito M, Tsounapi P, Oikawa R, Shimizu S, Honda M, Sejima T, et al. Prostatic ischemia induces ventral prostatic hyperplasia in the SHR; possible mechanism of development of BPH. Sci Rep. 2014;4:3822.

    PubMed  PubMed Central  Google Scholar 

  23. Akbar A, Liu K, Michos ED, Bancks MP, Brubaker L, Markossian T, et al. Association of overactive bladder with hypertension and blood pressure control: the multi-ethnic study of atherosclerosis (MESA). Am J Hypertens. 2022;35:22–30.

    PubMed  Google Scholar 

  24. Yokoyama O, Nishizawa O, Homma Y, Takeda M, Gotoh M, Kakizaki H, et al. Nocturnal polyuria and hypertension in patients with lifestyle related diseases and overactive bladder. J Urol. 2017;197:423–31.

    PubMed  Google Scholar 

  25. Sugaya K, Nishijima S, Oda M, Owan T, Miyazato M, Ogawa Y. Biochemical and body composition analysis of nocturia in the elderly. Neurourol Urodyn. 2008;27:205–11.

    CAS  PubMed  Google Scholar 

  26. Michel MC, Heemann U, Schumacher H, Mehlburger L, Goepel M. Association of hypertension with symptoms of benign prostatic hyperplasia. J Urol. 2004;172:1390–3.

    PubMed  Google Scholar 

  27. Hwang EC, Kim SO, Nam DH, Yu HS, Hwang I, Jung SI, et al. Men with hypertension are more likely to have severe lower urinary tract symptoms and large prostate volume. Low Urin Trac Symptoms. 2015;7:32–6.

    Google Scholar 

  28. White WB, Moon T. Treatment of benign prostatic hyperplasia in hypertensive men. J Clin Hypertens. 2005;7:212–7.

    Google Scholar 

  29. Edwards KM, Wilson KL, Sadja J, Ziegler MG, Mills PJ. Effects on blood pressure and autonomic nervous system function of a 12-week exercise or exercise plus DASH-diet intervention in individuals with elevated blood pressure. Acta Physiol. 2011;203:343–50.

    CAS  Google Scholar 

  30. Hubeaux K, Deffieux X, Ismael SS, Raibaut P, Amarenco G. Autonomic nervous system activity during bladder filling assessed by heart rate variability analysis in women with idiopathic overactive bladder syndrome or stress urinary incontinence. J Urol. 2007;178:2483–7.

    PubMed  Google Scholar 

  31. McVary KT, Rademaker A, Lloyd GL, Gann P. Autonomic nervous system overactivity in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol. 2005;174:1327–433.

    PubMed  Google Scholar 

  32. McVary KT, Razzaq A, Lee C, Venegas MF, Rademaker A, McKenna KE. Growth of the rat prostate gland is facilitated by the autonomic nervous system. Biol Reprod. 1994;51:99–107.

    CAS  PubMed  Google Scholar 

  33. Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23:786.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pinggera GM, Mitterberger M, Steiner E, Pallwein L, Frauscher F, Aigner F, et al. Association of lower urinary tract symptoms and chronic ischaemia of the lower urinary tract in elderly women and men: assessment using colour Doppler ultrasonography. BJU Int. 2008;102:470–4.

    PubMed  Google Scholar 

  35. Berger AP, Bartsch G, Deibl M, Alber H, Pachinger O, Fritsche G, et al. Atherosclerosis as a risk factor for benign prostatic hyperplasia. BJU Int. 2006;98:1038–42.

    PubMed  Google Scholar 

  36. Spitsbergen JM, Clemow DB, McCarty R, Steers WD, Tuttle JB. Neurally mediated hyperactive voiding in spontaneously hypertensive rats. Brain Res. 1998;790:151–9.

    CAS  PubMed  Google Scholar 

  37. Steers WD, Clemow DB, Persson K, Sherer TB, Andersson KE, Tuttle JB. The spontaneously hypertensive rat: insight into the pathogenesis of irritative symptoms in benign prostatic hyperplasia and young anxious males. Exp Physiol. 1999;84:137–47.

    CAS  PubMed  Google Scholar 

  38. Yono M, Yamamoto Y, Yoshida M, Ueda S, Latifpour J. Effects of doxazosin on blood flow and mRNA expression of nitric oxide synthase in the spontaneously hypertensive rat genitourinary tract. Life Sci. 2007;81:218–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saito M, Ohmasa F, Tsounapi P, Inoue S, Dimitriadis F, Kinoshita Y, et al. Nicorandil ameliorates hypertension-related bladder dysfunction in the rat. Neurourol Urodyn. 2012;31:695–701.

    CAS  PubMed  Google Scholar 

  40. Shen S, Xia CM, Qiao LY. The urinary bladder of spontaneously hypertensive rat demonstrates bladder hypertrophy, inflammation, and fibrosis but not hyperplasia. Life Sci. 2015;121:22–7.

    CAS  PubMed  Google Scholar 

  41. Shen JD, Chen SJ, Chen HY, Chiu KY, Chen YH, Chen WC. Review of animal models to study urinary bladder function. Biology. 2021;10:1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shimizu S, Saito M, Oiwa H, Ohmasa F, Tsounapi P, Oikawa R, et al. Olmesartan ameliorates urinary dysfunction in the spontaneously hypertensive rat via recovering bladder blood flow and decreasing oxidative stress. Neurourol Urodyn. 2014;33:350–7.

    CAS  PubMed  Google Scholar 

  43. Kim KH, Jin LH, Choo GY, Lee HJ, Choi BH, Kwak J, et al. Nonselective blocking of the sympathetic nervous system decreases detrusor overactivity in spontaneously hypertensive rats. Int J Mol Sci. 2012;13:5048–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Golomb E, Rosenzweig N, Eilam R, Abramovici A. Spontaneous hyperplasia of the ventral lobe of the prostate in aging genetically hypertensive rats. J Androl. 2000;21:58–64.

    CAS  PubMed  Google Scholar 

  45. Zhang X, Na Y, Guo Y. Biologic feature of prostatic hyperplasia developed in spontaneously hypertensive rats. Urology. 2004;63:983–8.

    PubMed  Google Scholar 

  46. Matityahou A, Rosenzweig N, Golomb E. Rapid proliferation of prostatic epithelial cells in spontaneously hypertensive rats: a model of spontaneous hypertension and prostate hyperplasia. J Androl. 2003;24:263–9.

    PubMed  Google Scholar 

  47. Yamashita M, Zhang X, Shiraishi T, Uetsuki H, Kakehi Y. Determination of percent area density of epithelial and stromal components in development of prostatic hyperplasia in spontaneously hypertensive rats. Urology. 2003;61:484–9.

    PubMed  Google Scholar 

  48. Shimizu S, Shimizu T, Tsounapi P, Higashi Y, Martin DT, Nakamura K, et al. Effect of silodosin, an alpha1A-adrenoceptor antagonist, on ventral prostatic hyperplasia in the spontaneously hypertensive rat. PLoS One. 2015;10:e0133798.

    PubMed  PubMed Central  Google Scholar 

  49. Morelli A, Sarchielli E, Comeglio P, Filippi S, Mancina R, Gacci M, et al. Phosphodiesterase type 5 expression in human and rat lower urinary tract tissues and the effect of tadalafil on prostate gland oxygenation in spontaneously hypertensive rats. J Sex Med. 2011;8:2746–60.

    CAS  PubMed  Google Scholar 

  50. Shimizu S, Nagao Y, Kataoka T, Kamada S, Shimizu T, Higashi Y, et al. Protective effects of tadalafil on prostatic hyperplasia in spontaneously hypertensive rats. Eur J Pharm. 2020;882:173313.

    CAS  Google Scholar 

  51. Shimizu S, Nagao Y, Shimizu T, Higashi Y, Karashima T, Saito M. Therapeutic effects of losartan on prostatic hyperplasia in spontaneously hypertensive rats. Life Sci. 2021;266:118924.

    CAS  PubMed  Google Scholar 

  52. Nagao Y, Shimizu S, Kurabayashi A, Shimizu T, Tsuda M, Higashi Y, et al. Effects of silodosin and tadalafil on bladder dysfunction in spontaneously hypertensive rats: possible role of bladder blood flow. Int J Urol. 2020;27:258–65.

    CAS  PubMed  Google Scholar 

  53. Kurokawa T, Zha X, Ito H, Aoki Y, Akino H, Kobayashi M, et al. Underlying mechanisms of urine storage dysfunction in rats with salt-loading hypertension. Life Sci. 2015;141:8–12.

    CAS  PubMed  Google Scholar 

  54. Velasquez Flores M, Mossa AH, Cammisotto P, Campeau L. Bladder overdistension with polyuria in a hypertensive rat model. Neurourol Urodyn. 2018;37:1904–12.

    CAS  PubMed  Google Scholar 

  55. Ramos-Filho AC, Mónica FZ, Franco-Penteado CF, Rojas-Moscoso JA, Báu FR, Schenka AA, et al. Characterization of the urinary bladder dysfunction in renovascular hypertensive rats. Neurourol Urodyn. 2011;30:1392–402.

    PubMed  Google Scholar 

  56. Ramos-Filho AC, Moscoso JA, Calmasini F, de Almeida Faria J, Anhê GF, Mónica FZ, et al. Blockade of renin-angiotensin system prevents micturition dysfunction in renovascular hypertensive rats. Eur J Pharm. 2014;738:285–92.

    CAS  Google Scholar 

  57. Mónica FZ, Bricola AA, Báu FR, Freitas LL, Teixeira SA, Muscará MN, et al. Long-term nitric oxide deficiency causes muscarinic supersensitivity and reduces beta(3)-adrenoceptor-mediated relaxation, causing rat detrusor overactivity. Br J Pharm. 2008;153:1659–68.

    Google Scholar 

  58. Noguchi K, Sugaya K, Nishijima S, Sakanashi M, Kadekawa K, Ashitomi K, et al. Evaluation of a rat model of functional urinary bladder outlet obstruction produced by chronic inhibition of nitric oxide synthase. Life Sci. 2019;234:116772.

    CAS  PubMed  Google Scholar 

  59. Lee WC, Chien CT, Yu HJ, Lee SW. Bladder dysfunction in rats with metabolic syndrome induced by long-term fructose feeding. J Urol. 2008;179:2470–6.

    PubMed  Google Scholar 

  60. Chung SD, Chien CT, Yu HJ. Alterations in peripheral purinergic and muscarinic signaling of rat bladder after long-term fructose-induced metabolic syndrome. Eur J Nutr. 2013;52:347–59.

    CAS  PubMed  Google Scholar 

  61. Nakazawa R, Tanaka M, Takahashi T, Kobayashi S, Iwamoto T. Effects of castration and testosterone administration on angiotensin II receptor mRNA expression and apoptosis-related proteins in rat urinary bladder. Endocr J. 2007;54:211–9.

    CAS  PubMed  Google Scholar 

  62. Ramos-Filho AC, Faria JA, Calmasini FB, Teixeira SA, Mónica FZ, Muscará MN, et al. The renin-angiotensin system plays a major role in voiding dysfunction of ovariectomized rats. Life Sci. 2013;93:820–9.

    CAS  PubMed  Google Scholar 

  63. Weaver-Osterholtz D, Reams G, De Vergel CF, Bauer JH. The bladder angiotensin system in female rats: response to infusions of angiotensin I and the angiotensin converting enzyme inhibitor enalaprilat. J Urol. 2001;165:1735–8.

    CAS  PubMed  Google Scholar 

  64. Yamada S, Takeuchi C, Oyunzul L, Ito Y. Bladder angiotensin-II receptors: characterization and alteration in bladder outlet obstruction. Eur Urol. 2009;55:482–9.

    CAS  PubMed  Google Scholar 

  65. Cho ST, Park EY, Kim JC. Effect of angiotensin II receptor antagonist telmisartan on detrusor overactivity in rats with bladder outlet obstruction. Urology. 2012;80:1163.e1–7.

    PubMed  Google Scholar 

  66. Tobu S, Noguchi M, Hatada T, Mori K, Matsuo M, Sakai H. Changes in angiotensin II type 1 receptor expression in the rat bladder by bladder outlet obstruction. Urol Int. 2012;89:241–5.

    CAS  PubMed  Google Scholar 

  67. Lim I, Mitsui R, Kameda M, Sellers DJ, Chess-Williams R, Hashitani H. Comparative effects of angiotensin II on the contractility of muscularis mucosae and detrusor in the pig urinary bladder. Neurourol Urodyn. 2021;40:102–11.

    CAS  PubMed  Google Scholar 

  68. Shirotake S, Miyajima A, Kosaka T, Tanaka N, Maeda T, Kikuchi E, et al. Angiotensin II type 1 receptor expression and microvessel density in human bladder cancer. Urology. 2011;77:1009.e19–25.

    PubMed  Google Scholar 

  69. Erspamer V, Ronzoni G, Falconieri Erspamer G. Effects of active peptides on the isolated muscle of the human urinary bladder. Investig Urol. 1981;18:302–4.

    CAS  Google Scholar 

  70. Andersson KE, Hedlund H, Stahl M. Contractions induced by angiotensin I, angiotensin II and bradykinin in isolated smooth muscle from the human detrusor. Acta Physiol Scand. 1992;145:253–9.

    CAS  PubMed  Google Scholar 

  71. Lam DS, Dias LS, Moore KH, Burcher E. Angiotensin II in child urinary bladder: functional and autoradiographic studies. BJU Int. 2000;86:494–501.

    CAS  PubMed  Google Scholar 

  72. Waldeck K, Lindberg BF, Persson K, Andersson KE. Characterization of angiotensin II formation in human isolated bladder by selective inhibitors of ACE and human chymase: a functional and biochemical study. Br J Pharm. 1997;121:1081–6.

    CAS  Google Scholar 

  73. Frara N, Giaddui D, Braverman AS, Jawawdeh K, Wu C, Ruggieri MR Sr., et al. Mechanisms involved in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox)-derived reactive oxygen species (ROS) modulation of muscle function in human and dog bladders. PLoS One. 2023;18:e0287212.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tanabe N, Ueno A, Tsujimoto G. Angiotensin II receptors in the rat urinary bladder smooth muscle: type 1 subtype receptors mediate contractile responses. J Urol. 1993;150:1056–9.

    CAS  PubMed  Google Scholar 

  75. Persson K, Pandita RK, Waldeck K, Andersson KE. Angiotensin II and bladder obstruction in the rat: influence on hypertrophic growth and contractility. Am J Physiol. 1996;271:R1186–92.

    CAS  PubMed  Google Scholar 

  76. Dolber PC, Jin H, Nassar R, Coffman TM, Gurley SB, Fraser MO. The effects of Ins2(Akita) diabetes and chronic angiotensin II infusion on cystometric properties in mice. Neurourol Urodyn. 2015;34:72–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheng EY, Grammatopoulos T, Lee C, Sensibar J, Decker R, Kaplan WE, et al. Angiotensin II and basic fibroblast growth factor induce neonatal bladder stromal cell mitogenesis. J Urol. 1996;156:593–7.

    CAS  PubMed  Google Scholar 

  78. Cheng EY, Decker RS, Lee C. Role of angiotensin II in bladder smooth muscle growth and function. Adv Exp Med Biol. 1999;462:183–91.

    CAS  PubMed  Google Scholar 

  79. Siregar S, Parardya A, Sibarani J, Romdan T, Adi K, Hernowo BS, et al. AT(1) expression in human urethral stricture tissue. Res Rep Urol. 2017;9:181–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nassis L, Frauman AG, Ohishi M, Zhuo J, Casley DJ, Johnston CI, et al. Localization of angiotensin-converting enzyme in the human prostate: pathological expression in benign prostatic hyperplasia. J Pathol. 2001;195:571–9.

    CAS  PubMed  Google Scholar 

  81. Dinh DT, Frauman AG, Somers GR, Ohishi M, Zhou J, Casley DJ, et al. Evidence for activation of the renin-angiotensin system in the human prostate: increased angiotensin II and reduced AT(1) receptor expression in benign prostatic hyperplasia. J Pathol. 2002;196:213–9.

    CAS  PubMed  Google Scholar 

  82. Dinh DT, Frauman AG, Sourial M, Casley DJ, Johnston CI, Fabiani ME. Identification, distribution, and expression of angiotensin II receptors in the normal human prostate and benign prostatic hyperplasia. Endocrinology. 2001;142:1349–56.

    CAS  PubMed  Google Scholar 

  83. O’Mahony OA, Barker S, Puddefoot JR, Vinson GP. Synthesis and secretion of angiotensin II by the prostate gland in vitro. Endocrinology. 2005;146:392–8.

    PubMed  Google Scholar 

  84. Fabiani ME, Hawkes DJ, Frauman AG, Tikellis C, Johnston CI, Wilkinson-Berka JL. Regulation of angiotensin II receptors in the prostate of the transgenic (mRen-2)27 rat: effect of angiotensin-converting enzyme inhibition. Int J Biochem Cell Biol. 2003;35:973–83.

    CAS  PubMed  Google Scholar 

  85. Lin L, Li P, Liu X, Xie X, Liu L, Singh AK, et al. Systematic review and meta-analysis of candidate gene association studies of benign prostate hyperplasia. Syst Rev. 2022;11:60.

    PubMed  PubMed Central  Google Scholar 

  86. Lamy GB, Cafarchio EM, do Vale B, Antonio BB, Venancio DP, de Souza JS, et al. Unveiling the Angiotensin-(1-7) actions on the urinary bladder in female rats. Front Physiol. 2022;13:920636.

    PubMed  PubMed Central  Google Scholar 

  87. Domińska K, Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Ochędalski T, Piastowska-Ciesielska AW. The opposite effects of angiotensin 1-9 and angiotensin 3-7 in prostate epithelial cells. Biochem Biophys Res Commun. 2019;519:868–73.

    PubMed  Google Scholar 

  88. Domińska K, Okła P, Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Ochędalski T, et al. Influence and mechanism of Angiotensin 1-7 on biological properties of normal prostate epithelial cells. Biochem Biophys Res Commun. 2018;502:152–9.

    PubMed  Google Scholar 

  89. Dinh DT, Frauman AG, Casley DJ, Johnston CI, Fabiani ME. Angiotensin AT(4) receptors in the normal human prostate and benign prostatic hyperplasia. Mol Cell Endocrinol. 2001;184:187–92.

    CAS  PubMed  Google Scholar 

  90. Andersson KE, Nomiya M, Yamaguchi O. Chronic pelvic ischemia: contribution to the pathogenesis of lower urinary tract symptoms (LUTS): a new target for pharmacological treatment? Low Urin Trac Symptoms. 2015;7:1–8.

    CAS  Google Scholar 

  91. Nomiya M, Andersson KE, Yamaguchi O. Chronic bladder ischemia and oxidative stress: new pharmacotherapeutic targets for lower urinary tract symptoms. Int J Urol. 2015;22:40–6.

    CAS  PubMed  Google Scholar 

  92. Andersson KE. Oxidative stress and its relation to lower urinary tract symptoms. Int Neurourol J. 2022;26:261–7.

    PubMed  PubMed Central  Google Scholar 

  93. Masuda H, Kihara K, Saito K, Matsuoka Y, Yoshida S, Chancellor MB, et al. Reactive oxygen species mediate detrusor overactivity via sensitization of afferent pathway in the bladder of anaesthetized rats. BJU Int. 2008;101:775–80.

    CAS  PubMed  Google Scholar 

  94. Phull H, Salkini M, Escobar C, Purves T, Comiter CV. The role of angiotensin II in stress urinary incontinence: a rat model. Neurourol Urodyn. 2007;26:81–8.

    CAS  PubMed  Google Scholar 

  95. Ye G, Jin X. Action of autonomic drugs on the in vivo bladder base and proximal urethra in dog. Chin Med J. 1997;110:173–6.

    CAS  PubMed  Google Scholar 

  96. Lin J, Freeman MR. Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate. 2003;54:1–7.

    PubMed  Google Scholar 

  97. Fabiani ME, Sourial M, Thomas WG, Johnston CI, Johnston CI, Frauman AG. Angiotensin II enhances noradrenaline release from sympathetic nerves of the rat prostate via a novel angiotensin receptor: implications for the pathophysiology of benign prostatic hyperplasia. J Endocrinol. 2001;171:97–108.

    CAS  PubMed  Google Scholar 

  98. Strittmatter F, Walther S, Gratzke C, Göttinger J, Beckmann C, Roosen A, et al. Inhibition of adrenergic human prostate smooth muscle contraction by the inhibitors of c-Jun N-terminal kinase, SP600125 and BI-78D3. Br J Pharm. 2012;166:1926–35.

    CAS  Google Scholar 

  99. Jarari N, Rao N, Peela JR, Ellafi KA, Shakila S, Said AR, et al. A review on prescribing patterns of antihypertensive drugs. Clin Hypertens. 2015;22:7.

    PubMed  Google Scholar 

  100. Ito H, Taga M, Tsuchiyama K, Akino H, Yokoyama O. IPSS is lower in hypertensive patients treated with angiotensin-II receptor blocker: posthoc analyses of a lower urinary tract symptoms population. Neurourol Urodyn. 2013;32:70–4.

    CAS  PubMed  Google Scholar 

  101. Elliott CS, Comiter CV. The effect of angiotensin inhibition on urinary incontinence: data from the National Health and Nutrition Examination Survey (2001-2008). Neurourol Urodyn. 2014;33:1178–81.

    PubMed  Google Scholar 

  102. Shirazi M, Khezri A, Samani SM, Monabbati A, Kojoori J, Hassanpour A. Effect of intraurethral captopril gel on the recurrence of urethral stricture after direct vision internal urethrotomy: phase II clinical trial. Int J Urol. 2007;14:203–8.

    CAS  PubMed  Google Scholar 

  103. Hall SA, Chiu GR, Kaufman DW, Wittert GA, Link CL, McKinlay JB. Commonly used antihypertensives and lower urinary tract symptoms: results from the Boston Area Community Health (BACH) Survey. BJU Int. 2012;109:1676–84.

    PubMed  Google Scholar 

  104. Salman M, Khan AH, Syed Sulaiman SA, Khan JH, Hussain K, Shehzadi N. Effect of calcium channel blockers on lower urinary tract symptoms: a systematic review. Biomed Res Int. 2017;2017:4269875.

    PubMed  PubMed Central  Google Scholar 

  105. Bulpitt CJ, Connor M, Schulte M, Fletcher AE. Bisoprolol and nifedipine retard in elderly hypertensive patients: effect on quality of life. J Hum Hypertens. 2000;14:205–12.

    CAS  PubMed  Google Scholar 

  106. Washino S, Ugata Y, Saito K, Miyagawa T. Calcium channel blockers are associated with nocturia in men aged 40 years or older. J Clin Med. 2021;10:1603.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Aikawa K, Sakai T, Ishibashi K, Shiomi H, Sagawa K, Kumagai S, et al. Involvement of angiotensin II type 1 receptor on pathological remodeling and dysfunction in obstructed bladder. Int J Urol. 2012;19:457–64.

    CAS  PubMed  Google Scholar 

  108. Comiter C, Phull HS. Angiotensin II type 1 (AT-1) receptor inhibition partially prevents the urodynamic and detrusor changes associated with bladder outlet obstruction: a mouse model. BJU Int. 2012;109:1841–6.

    CAS  PubMed  Google Scholar 

  109. Juszczak K, Maciukiewicz P. The angiotensin II receptors type 1 blockage affects the urinary bladder activity in hyperosmolar-induced detrusor overactivity in rats: preliminary results. Adv Clin Exp Med. 2017;26:1047–51.

    PubMed  Google Scholar 

  110. Mohamed BM, Ismail RS, Saleh IG, Abo-Salem OM, El-Sayed EM. Olmesartan ameliorates cyclophosphamide-induced hemorrhagic cystitis in rats via Nrf2/HO-1 signaling pathway. Tissue Cell. 2022;78:101877.

    CAS  PubMed  Google Scholar 

  111. Siregar S, Farenia R, Sugandi S, Roesli RM. Effect of angiotensin II receptor blocker on TGF-β1, MMP-1, and collagen type I and type III concentration in New Zealand rabbit urethral stricture model. Res Rep. Urol. 2018;10:127–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Furukawa S, Yamamoto O, Tamura T, Masuda Y, Shudo C, Hayashi K, et al. Influence of efonidipine hydrochloride, calcium antagonist on the epithelium of prostates in spontaneously hypertensive rats. J Toxicol Sci. 1994;19:213–7.

    CAS  PubMed  Google Scholar 

  113. Shen F, Dong LN, Zhang XY, Zhao XK, Zeng XF, Qu XB. [Inhibitory effect of losartan on prostatic hyperplasia in spontaneous hypertension rats and its pathophysiological mechanism]. Zhonghua Nan Ke Xue. 2012;18:600–5.

    CAS  PubMed  Google Scholar 

  114. Yu W, Zhao YY, Zhang ZW, Guo YL, Jin J. Angiotension II receptor 1 blocker modifies the expression of apoptosis-related proteins and transforming growth factor-beta1 in prostate tissue of spontaneously hypertensive rats. BJU Int. 2007;100:1161–5.

    CAS  PubMed  Google Scholar 

  115. Mostafa F, Mantawy EM, Azab SS, El-Demerdash E. The angiotensin converting enzyme inhibitor captopril attenuates testosterone-induced benign prostatic hyperplasia in rats; a mechanistic approach. Eur J Pharm. 2019;865:172729.

    CAS  Google Scholar 

  116. Ishola IO, Anunobi CC, Tijani KH, Afolayan O, Udokwu VU. Potential of telmisartan in the treatment of benign prostatic hyperplasia. Fundam Clin Pharm. 2017;31:643–51.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI (grant numbers 19K09673 and 22K09450). The author thanks Editage (www.editage.com) for the English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Shimizu.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, S. Insights into the associative role of hypertension and angiotensin II receptor in lower urinary tract dysfunction. Hypertens Res 47, 987–997 (2024). https://doi.org/10.1038/s41440-024-01597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01597-8

Keywords

Search

Quick links