Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics revolution in rheumatology: large scale genomic arrays and genetic mapping

Key Points

  • Large-scale genome-wide association studies (GWAS), meta-analyses, fine-mapping and studies with populations of diverse ancestries have identified hundreds of genetic loci that predispose individuals to rheumatic diseases

  • Genetic susceptibility regions overlap between diseases, suggesting common disease mechanisms and treatment choices

  • Genetic associations can implicate pathways (for example, T helper cell differentiation) involved in disease onset and/or outcome

  • A number of existing drugs (such as tofacitinib, tocilizumab and abatacept) target proteins encoded by genes identified through GWAS, suggesting that genetic studies can help identify novel therapeutic targets

  • Most disease-associated variants map to noncoding regions responsible for controlling gene expression and DNA conformational analysis is beginning to help in the challenging task of unravelling their function

Abstract

Susceptibility to rheumatic diseases, such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, juvenile idiopathic arthritis and psoriatic arthritis, includes a large genetic component. Understanding how an individual's genetic background influences disease onset and outcome can lead to a better understanding of disease biology, improved diagnosis and treatment, and, ultimately, to disease prevention or cure. The past decade has seen great progress in the identification of genetic variants that influence the risk of rheumatic diseases. The challenging task of unravelling the function of these variants is ongoing. In this Review, the major insights from genetic studies, gained from advances in technology, bioinformatics and study design, are discussed in the context of rheumatic disease. In addition, pivotal genetic studies in the main rheumatic diseases are highlighted, with insights into how these studies have changed the way we view these conditions in terms of disease overlap, pathways of disease and potential new therapeutic targets. Finally, the limitations of genetic studies, gaps in our knowledge and ways in which current genetic knowledge can be fully translated into clinical benefit are examined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of the major advances in rheumatoid arthritis genetics research.
Figure 2: Overlap of associated loci among five rheumatic diseases.
Figure 3: Genes of the T helper cell differentiation pathway implicated in rheumatic diseases.

Similar content being viewed by others

References

  1. Alarcon-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52, 1138–1147 (2005).

    Article  PubMed  Google Scholar 

  2. Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Karason, A., Love, T. J. & Gudbjornsson, B. A strong heritability of psoriatic arthritis over four generations — the Reykjavik Psoriatic Arthritis Study. Rheumatology (Oxford) 48, 1424–1428 (2009).

    Article  Google Scholar 

  4. Silman, A. J. et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32, 903–907 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Spector, T. D. & MacGregor, A. J. Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage 12 (Suppl. A), S39–S44 (2004).

    Article  PubMed  Google Scholar 

  6. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  8. Plenge, R. M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plenge, R. M. et al. TRAF1-C5 as a risk locus for rheumatoid arthritis — a genomewide study. N. Engl. J. Med. 357, 1199–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barton, A. et al. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat. Genet. 40, 1156–1159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomson, W. et al. Rheumatoid arthritis association at 6q23. Nat. Genet. 39, 1431–1433 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeggini, E. et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380, 815–823 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Valdes, A. M. et al. Involvement of different risk factors in clinically severe large joint osteoarthritis according to the presence of hand interphalangeal nodes. Arthritis Rheum. 62, 2688–2695 (2010).

    Article  PubMed  Google Scholar 

  20. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evangelou, E. et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis. 73, 2130–2136 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Gee, F., Rushton, M. D., Loughlin, J. & Reynard, L. N. Correlation of the osteoarthritis susceptibility variants that map to chromosome 20q13 with an expression quantitative trait locus operating on NCOA3 and with functional variation at the polymorphism rs116855380. Arthritis Rheumatol. 67, 2923–2932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris, D. L. et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat. Genet. 48, 940–946 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Chapman, K. et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5′ UTR of GDF5 with osteoarthritis susceptibility. Hum. Mol. Genet. 17, 1497–1504 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adrianto, I. et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat. Genet. 43, 253–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cortes, A. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hinks, A. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat. Genet. 45, 664–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, C. et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 48, 323–330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fortune, M. D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet. 47, 839–846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liley, J. & Wallace, C. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics. PLoS Genet. 11, e1004926 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallace, C. et al. Dissection of a complex disease susceptibility region using a Bayesian stochastic search approach to fine mapping. PLoS Genet. 11, e1005272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bowes, J. et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 6, 6046 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemos, L. L. et al. Treatment of psoriatic arthritis with anti-TNF agents: a systematic review and meta-analysis of efficacy, effectiveness and safety. Rheumatol. Int. 34, 1345–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Bossini-Castillo, L., Lopez-Isac, E. & Martin, J. Immunogenetics of systemic sclerosis: defining heritability, functional variants and shared-autoimmunity pathways. J. Autoimmun. 64, 53–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Mayes, M. D. et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am. J. Hum. Genet. 94, 47–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopez-Isac, E. et al. Brief report: IRF4 newly identified as a common susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-disease meta-analysis of genome-wide association studies. Arthritis Rheumatol. 68, 2338–2344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sekine, C. et al. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. J. Immunol. 180, 1954–1961 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira, M. A. et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378, 1006–1014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohan, C. & Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 11, 329–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Guerra, S. G., Vyse, T. J. & Cunninghame Graham, D. S. The genetics of lupus: a functional perspective. Arthritis Res. Ther. 14, 211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Robinson, P. C. & Brown, M. A. Genetics of ankylosing spondylitis. Mol. Immunol. 57, 2–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Brown, M. A., Kenna, T. & Wordsworth, B. P. Genetics of ankylosing spondylitis — insights into pathogenesis. Nat. Rev. Rheumatol. 12, 81–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Loughlin, J. Genetic contribution to osteoarthritis development: current state of evidence. Curr. Opin. Rheumatol. 27, 284–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reynard, L. N. & Loughlin, J. Insights from human genetic studies into the pathways involved in osteoarthritis. Nat. Rev. Rheumatol. 9, 573–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Rogers, E. L., Reynard, L. N. & Loughlin, J. The role of inflammation-related genes in osteoarthritis. Osteoarthritis Cartilage 23, 1933–1938 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren's syndrome. Nat. Genet. 45, 1284–1292 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Li, Y. et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjogren's syndrome at 7q11.23. Nat. Genet. 45, 1361–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Albagha, O. M. et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nat. Genet. 42, 520–524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Albagha, O. M. et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat. Genet. 43, 685–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Vallet, M. et al. Targeted sequencing of the Paget's disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget's disease of bone. Hum. Mol. Genet. 24, 3286–3295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie, G. et al. Association of granulomatosis with polyangiitis (Wegener's) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 65, 2457–2468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rahmattulla, C. et al. Genetic variants in ANCA-associated vasculitis: a meta-analysis. Ann. Rheum. Dis. 75, 1687–1692 (2016).

    Article  PubMed  Google Scholar 

  65. Kottgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Miao, Z. M. et al. NALP3 inflammasome functional polymorphisms and gout susceptibility. Cell Cycle 8, 27–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Detert, J. & Klaus, P. Biologic monotherapy in the treatment of rheumatoid arthritis. Biologics 9, 35–43 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shetty, A. et al. Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des. Devel. Ther. 8, 349–364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9, e1003444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Swerdlow, D. I. et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Schiff, M. Abatacept treatment for rheumatoid arthritis. Rheumatology (Oxford) 50, 437–449 (2011).

    Article  CAS  Google Scholar 

  72. Oliver, J., Plant, D., Webster, A. P. & Barton, A. Genetic and genomic markers of anti-TNF treatment response in rheumatoid arthritis. Biomark. Med. 9, 499–512 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Plant, D., Wilson, A. G. & Barton, A. Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat. Rev. Rheumatol. 10, 329–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  76. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kersey, P. J. et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44, D574–D580 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martens, J. H. & Stunnenberg, H. G. BLUEPRINT: mapping human blood cell epigenomes. Haematologica 98, 1487–1489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Trynka, G. & Raychaudhuri, S. Using chromatin marks to interpret and localize genetic associations to complex human traits and diseases. Curr. Opin. Genet. Dev. 23, 635–641 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  83. Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. 13, 307–308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fairfax, B. P. & Knight, J. C. Genetics of gene expression in immunity to infection. Curr. Opin. Immunol. 30, 63–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Westra, H. J. et al. Cell specific eQTL analysis without sorting cells. PLoS Genet. 11, e1005223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Andres, A. M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Robinson, P. C. et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann. Rheum. Dis. 74, 1627–1629 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA 104, 6758–6763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  91. Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Miele, A. & Dekker, J. Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C). Methods Mol. Biol. 464, 105–121 (2009).

    Article  PubMed  Google Scholar 

  95. Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Grabiec, A. M. et al. JNK-dependent downregulation of FoxO1 is required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1763–1771 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, S., Wen, F., Wiley, G. B., Kinter, M. T. & Gaffney, P. M. An enhancer element harboring variants associated with systemic lupus erythematosus engages the TNFAIP3 promoter to influence A20 expression. PLoS Genet. 9, e1003750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McGovern, A. et al. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol. 17, 212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cong, L. & Zhang, F. Genome engineering using CRISPR–Cas9 system. Methods Mol. Biol. 1239, 197–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and applications of CRISPRsystems: harnessing nature's toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Hilton, I. B. & Gersbach, C. A. Enabling functional genomics with genome engineering. Genome Res. 25, 1442–1455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  110. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Evangelou, E. & Ioannidis, J. P. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 6, 91 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Konig, I. R. Validation in genetic association studies. Brief. Bioinform. 12, 253–258 (2011).

    Article  PubMed  Google Scholar 

  115. Stephens, M. & Balding, D. J. Bayesian statistical methods for genetic association studies. Nat. Rev. Genet. 10, 681–690 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Ioannidis, J. P., Thomas, G. & Daly, M. J. Validating, augmenting and refining genome-wide association signals. Nat. Rev. Genet. 10, 318–329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pe'er, I. et al. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat. Genet. 38, 663–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Lewis-Faning, E. Report on an enquiry into the aetiological factors associated with rheumatoid arthritis. Ann. Rheum. Dis. 9, 1–94 (1950).

    Article  Google Scholar 

  122. Stastny, P. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Invest. 57, 1148–1157 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Abecasis, G. R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research work was supported by the Wellcome Trust (grant number 095684), Arthritis Research UK (grant number 20385) and the National Institute for Health Research Manchester Musculoskeletal Biomedical Research Unit. The views expressed in this publication are those of the authors and not necessarily those of the UK National Health Service, the National Institute for Health Research or the UK Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jane Worthington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Single nucleotide polymorphism (SNP)

DNA sequence variation of a single nucleotide that occurs at a specific position in the genome.

Candidate gene

In genetic association studies, the candidate gene approach tests associations between genetic variation within pre-specified genes of interest and phenotypes.

Genome-wide significance threshold

P value threshold that is considered statistically significant after multiple testing correction in GWAS, typically P <5 × 10−8.

Non-synonymous SNPs

SNPs that map to coding genes and result in an amino acid change in the protein they encode.

Statistical power

Probability that a test correctly rejects the null hypothesis.

Risk score

Estimate of the cumulative contribution of genetic factors to a specific outcome of interest in an individual that takes into account the reported risk alleles.

Linkage disequilibrium

Nonrandom association of alleles at different loci in a given population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyre, S., Orozco, G. & Worthington, J. The genetics revolution in rheumatology: large scale genomic arrays and genetic mapping. Nat Rev Rheumatol 13, 421–432 (2017). https://doi.org/10.1038/nrrheum.2017.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing