Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trojan horses and guided missiles: targeted therapies in the war on arthritis

Key Points

  • Systemic drug administration often results in off-site, on-target activity as well as amplification of off-target effects, with increased risk of adverse events

  • Active targeting to deliver therapeutic agents to disease-affected tissues is being developed as a modality to promote in situ drug activity and decrease systemic toxicity

  • Drug encapsulation within nanoparticles is a useful approach to provide protection from degradation and activation in the circulation and to reduce systemic activity

  • Antibodies are powerful targeting agents as both stand-alone therapeutics or as delivery methods to specifically direct drug conjugates to sites of active disease

  • The development of novel drugs with targeting and multi-specific properties will improve therapeutic indexes and could represent the next generation of RA therapeutics

Abstract

Despite major advances in the treatment of rheumatoid arthritis (RA) led by the success of biologic therapies, the lack of response to therapy in a proportion of patients, as well as therapy discontinuation owing to systemic toxicity, are still unsolved issues. Unchecked RA might develop into progressive structural joint damage, loss of function and long-term disability, disorders which are associated with a considerable health–economic burden. Therefore, new strategies are required to actively target and deliver therapeutic agents to disease sites in order to promote in situ activity and decrease systemic toxicity. Polymer–drug conjugates can improve the pharmacokinetics of therapeutic agents, conferring desirable properties such as increased solubility and tissue penetration at sites of active disease. Additionally, nanotechnology is an exciting modality in which drugs are encapsulated to protect them from degradation or early activation in the circulation, as well as to reduce systemic toxicity. Together with the targeting capacity of antibodies and site-specific peptides, these approaches will facilitate selective accumulation of therapeutic agents in the inflamed synovium, potentially improving drug efficacy at disease sites without affecting healthy tissues. This Review aims to summarize key developments in the past 5 years in polymer conjugation, nanoparticulate drug delivery and antibody or peptide-based targeting—strategies that might constitute the platform for the next generation of RA therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History of technological advances leading to the development of targeted NPs, PDCs and targeted biologic agents.
Figure 2: 'Trojan horse' approaches for drug delivery.
Figure 3: 'Guided missile' approaches for drug delivery.

Similar content being viewed by others

References

  1. Canal, F., Sanchis, J. & Vicent, M. J. Polymer—drug conjugates as nano-sized medicines. Curr. Opin. Biotechnol. 22, 894–900 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Jatzkewitz, H. Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z. Naturforsch. 10, 27–31 (1955).

    Article  Google Scholar 

  3. Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Pol. Sym. 51, 135–153 (1975).

    Article  CAS  Google Scholar 

  4. Wenjun, L., Peng, Z., Erik De, C., Hongxiang, L. & Xinyong, L. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci. 38, 412–444 (2013).

    Google Scholar 

  5. Zhang, L. & Granick, S. How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett. 6, 694–698 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. McInnes, I. & O'Dell, J. State-of-the-art: rheumatoid arthritis. Ann. Rheum. Dis. 69, 1898–1906 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Naor, D. & Nedvetzki, S. CD44 in rheumatoid arthritis. Arthritis Res. Ther. 5, 105–115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Heijden, J. W. et al. Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum. 60, 12–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Wilder, R. L. Integrin αVβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann. Rheum. Dis. 61 (Suppl. 2), ii96–ii99 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abuchowski, A., van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Pasut, G. & Veronese, F. M. State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release 161, 461–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Paleolog, E. The vasculature in rheumatoid arthritis: cause or consequence? Int. J. Exp. Pathol. 90, 249–261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konisti, S., Kiriakidis, S. & Paleolog, E. Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat. Rev. Rheumatol. 8, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Sundy, J. S. et al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 56, 1021–1028 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Sundy, J. S. et al. Reduction of plasma urate levels following treatment with multiple doses of pegloticase (polyethylene glycol-conjugated uricase) in patients with treatment-failure gout: results of a phase II randomized study. Arthritis Rheum. 58, 2882–2891 (2008).

    Article  PubMed  Google Scholar 

  18. Sundy, J. S. et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA 306, 711–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Niti, G. & Sue, S. Certolizumab pegol. MAbs 2, 137–147 (2010).

    Article  Google Scholar 

  20. Palframan, R., Airey, M., Moore, A., Vugler, A. & Nesbitt, A. Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis. J. Immunol. Methods 348, 36–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kong, J. S. et al. Suppression of neovascularization and experimental arthritis by D-form of anti-flt-1 peptide conjugated with mini-PEG. Angiogenesis 14, 431–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Quan, L. D. et al. Pharmacokinetic and biodistribution studies of N-(2-hydroxypropyl)methacrylamide copolymer-dexamethasone conjugates in adjuvant-induced arthritis rat model. Mol. Pharm. 7, 1041–1049 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quan, L. D. et al. Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy. Arthritis Res. Ther. 12, R170 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Quan, L. et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 8, 458–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Grace, M. et al. Structural and biologic characterization of pegylated recombinant IFN-α2b. J. Interferon Cytokine Res. 21, 1103–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, X. M. et al. Syntheses of click PEG-dexamethasone conjugates for the treatment of rheumatoid arthritis. Biomacromolecules 11, 2621–2628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin, J. M. et al. A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem. Commun. (Camb.) 50, 7632–7635 (2014).

    Article  CAS  Google Scholar 

  28. Kim, Y. J. et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 31, 9057–9064 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett. 36, 292–296 (1973).

    Article  CAS  PubMed  Google Scholar 

  30. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Jung, Y. S., Park, W. & Na, K. Temperature-modulated noncovalent interaction controllable complex for the long-term delivery of etanercept to treat rheumatoid arthritis. J. Control. Release 171, 143–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, S. M. et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7, 50–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Mitragotri, S. & Yoo, J. W. Designing micro- and nano-particles for treating rheumatoid arthritis. Arch. Pharm. Res. 34, 1887–1897 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  PubMed  Google Scholar 

  36. Vanniasinghe, A. S., Bender, V. & Manolios, N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin. Arthritis Rheum. 39, 182–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, T. et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 63, 2671–2680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, T., Bai, X. & Mao, X. Systemic delivery of small interfering RNA targeting the interleukin-2/15 receptor β chain prevents disease progression in experimental arthritis. PLoS ONE 8, e78619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, S. J. et al. TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol. Ther. 22, 397–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Bartlett, R. L. 2nd, Sharma, S. & Panitch, A. Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine 9, 419–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mero, A. et al. A hyaluronic acid-salmon calcitonin conjugate for the local treatment of osteoarthritis: chondro-protective effect in a rabbit model of early OA. J. Control. Release 187, 30–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Ryan, S. M. et al. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J. Control. Release 167, 120–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. de la Fuente, M., Seijo, B. & Alonso, M. J. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 49, 2016–2024 (2008).

    Article  PubMed  Google Scholar 

  44. Heo, R. et al. Hyaluronan nanoparticles bearing γ-secretase inhibitor: in vivo therapeutic effects on rheumatoid arthritis. J. Control. Release 192, 295–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Scheinman, R. I., Trivedi, R., Vermillion, S. & Kompella, U. B. Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. Nanomedicine (Lond.) 6, 1669–1682 (2011).

    Article  CAS  Google Scholar 

  46. Hou, K. K., Pan, H., Ratner, L., Schlesinger, P. H. & Wickline, S. A. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano 7, 8605–8615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, H. F. et al. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J. Clin. Invest. 124, 4363–4374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burmester, G. R., Feist, E. & Dorner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 77–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Brouwers, A. H. et al. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J. Nucl. Med. 45, 327–337 (2004).

    CAS  PubMed  Google Scholar 

  50. Low, P. S., Henne, W. A. & Doorneweerd, D. D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kiriakidis, S. & Paleolog, E. M. Vascular endothelium—role in chronic inflammatory disease. Postepy Biochem. 59, 415–423 (2013).

    CAS  PubMed  Google Scholar 

  52. Raatz, Y., Ibrahim, S., Feldmann, M. & Paleolog, E. M. Gene expression profiling and functional analysis of angiogenic markers in murine collagen-induced arthritis. Arthritis Res. Ther. 14, R169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bono, M. R. et al. The essential role of chemokines in the selective regulation of lymphocyte homing. Cytokine Growth Factor Rev. 18, 33–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Garrood, T., Lee, L. & Pitzalis, C. Molecular mechanisms of cell recruitment to inflammatory sites: general and tissue-specific pathways. Rheumatology (Oxford) 45, 250–260 (2006).

    Article  CAS  Google Scholar 

  55. Blades, M. et al. Stromal cell-derived factor 1 (CXCL12) induces monocyte migration into human synovium transplanted onto SCID mice. Arthritis Rheum. 46, 824–836 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Wahid, S. et al. Tumour necrosis factor-α (TNF-α) enhances lymphocyte migration into rheumatoid synovial tissue transplanted into severe combined immunodeficient (SCID) mice. Clin. Exp. Immunol. 122, 133–175 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, L. et al. Identification of synovium-specific homing peptides by in vivo phage display selection. Arthritis Rheum. 46, 2109–2129 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, Y. H., Rajaiah, R., Ruoslahti, E. & Moudgil, K. D. Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis. Proc. Natl Acad. Sci. USA 108, 12857–12862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanakaraj, P. et al. Simultaneous targeting of TNF and Ang2 with a novel bispecific antibody enhances efficacy in an in vivo model of arthritis. MAbs 4, 600–613 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kamperidis, P. et al. Development of a novel recombinant biotherapeutic with applications in targeted therapy of human arthritis. Arthritis Rheum. 63, 3758–3767 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Joosten, L. A. et al. Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis. Protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis Rheum. 40, 249–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Weinblatt, M. et al. rHUIL-10 (tenovil) plus methotrexate (MTX) in active rheumatoid arthritis (RA): a phase I and cytokine response study. Arthritis Rheum. 40 (Suppl.), 224 (1999).

    Google Scholar 

  63. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Doll, F., Schwager, K., Hemmerle, T. & Neri, D. Murine analogues of etanercept and of F8-IL10 inhibit the progression of collagen-induced arthritis in the mouse. Arthritis Res. Ther. 15, R138 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hughes, C. et al. Targeting of viral interleukin-10 with an antibody fragment specific to damaged arthritic cartilage improves its therapeutic potency. Arthritis Res. Ther. 16, R151 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hemmerle, T., Doll, F. & Neri, D. Antibody-based delivery of IL4 to the neovasculature cures mice with arthritis. Proc. Natl Acad. Sci. USA 111, 12008–12012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wythe, S. E. et al. Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann. Rheum. Dis. 72, 129–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Macor, P. et al. Treatment of experimental arthritis by targeting synovial endothelium with a neutralizing recombinant antibody to C5. Arthritis Rheum. 64, 2559–2567 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Rollett, A. et al. HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. Int. J. Pharm. 458, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Mi, Z. et al. Identification of a synovial fibroblast-specific protein transduction domain for delivery of apoptotic agents to hyperplastic synovium. Mol. Ther. 8, 295–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. Vanniasinghe, A. S. et al. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis. Clin. Immunol. 151, 43–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Zhou, H. F. et al. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 8, 7305–7317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, H. et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 8, 4790–4798 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Chan, A. C. & Carter, P. J. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol. 10, 301–316 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Nam, J. L. et al. Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum. Dis. 69, 976–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, M. et al. A novel bispecific antibody targeting tumor necrosis factor α and ED-B fibronectin effectively inhibits the progression of established collagen-induce arthritis. J. Biotechnol. 186, 1–12 (2014).

    Article  PubMed  CAS  Google Scholar 

  79. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ferrari, M., Onuoha, S., Kamalati, T., Sblattero, D. & Pitzalis, C. Development of a novel bispecific therapeutic for arthritic diseases. Arthritis Rheum. 65, S218–S218 (2013).

    Google Scholar 

  81. Taylor, P. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Yazici, Y. & Regens, A. L. Promising new treatments for rheumatoid arthritis—the kinase inhibitors. Bull NYU Hosp. Jt Dis. 69, 233–237 (2011).

    PubMed  Google Scholar 

  83. US National Institutes of Health. ClinicalTrials.gov [online], (2008).

  84. Vilar, G., Tulla-Puche, J. & Albericio, F. Polymers and drug delivery systems. Curr. Drug Deliv. 9, 367–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Hoekstra, M. et al. Factors associated with toxicity, final dose, and efficacy of methotrexate in patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 423–426 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Croft, D. R. et al. Complex CD44 splicing combinations in synovial fibroblasts from arthritic joints. Eur. J. Immunol. 27, 1680–1684 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    Article  PubMed  Google Scholar 

  88. Strebhardt, K. & Ullrich, A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. US National Institutes of Health. ClinicalTrials.gov [online], (2014).

Download references

Acknowledgements

The authors would like to acknowledge The Nuffield Foundation (Oliver Bird PhD Studentship to M.F.) and Arthritis Research UK (Project Grant 20062).

Author information

Authors and Affiliations

Authors

Contributions

M.F. and S.C.O. contributed equally to the research of data for the article; all authors contributed substantially to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Costantino Pitzalis.

Ethics declarations

Competing interests

C.P. is the inventor in a patent regarding single-chain variable fragment A7, and an inventor in a patent regarding the synovium-targeting peptide 3.1. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, M., Onuoha, S. & Pitzalis, C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol 11, 328–337 (2015). https://doi.org/10.1038/nrrheum.2015.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.17

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing