Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanomedicines for renal disease: current status and future applications

Key Points

  • Oncology has benefited greatly from nanotechnology research and investment, yielding important insights that are applicable to kidney nanomedicines

  • Nanocarriers have the potential to improve the pharmacokinetics, biodistribution, toxicity, and efficacy of drugs

  • Delivery and retention of nanomedicines in the kidney is challenging and requires a deep understanding of the renal barriers and effective engineering of nanoparticle size, shape, and surface chemistry

  • To improve drug efficacy and minimize systemic toxicity, nanomedicines can be targeted to distinct kidney cell types and/or to extracellular matrix components such as the glomerular basement membrane

  • Nanocarriers can deliver drugs, proteins, peptides and nucleic acids, and can facilitate the targeted delivery of genes or RNA interference molecules to treat kidney disorders for which the efficacy of current treatments is limited

  • Organ-on-a-chip kidneys can streamline the simultaneous screening and testing of nanomedicines in environments that mimic the kidney and accelerate translation of kidney-specific therapeutics

Abstract

Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug) influence their interactions with renal tissues has improved dramatically. Tailoring of nanomedicines in terms of kidney retention and binding to key membranes and cell populations associated with renal diseases is now possible and greatly enhances their localization, tolerability, and efficacy. This Review outlines nanomedicine characteristics central to improved targeting of renal cells and highlights the prospects, challenges, and opportunities of nanotechnology-mediated therapies for renal diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoparticle composition and features.
Figure 2: The kidney glomerulus and the glomerular basement membrane in health and disease.
Figure 3: In vitro systems to test nanoparticles.

Similar content being viewed by others

References

  1. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Heath, J. R. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J., Byrne, J. D., Napier, M. E. & DeSimone, J. M. More effective nanomedicines through particle design. Small 7, 1919–1931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mu, Q. et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 114, 7740–7781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Albanese, A. et al. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 8, 5515–5526 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anselmo, A. C. & Mitragotri, S. Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Deliv. Rev. http://dx.doi.org/10.1016/j.addr.2016.01.007 (2016).

  14. Marty, J. J., Oppenheim, R. C. & Speiser, P. Nanoparticles — a new colloidal drug delivery system. Pharm. Acta Helv. 53, 17–23 (1978).

    CAS  PubMed  Google Scholar 

  15. Shi, J., Xiao, Z., Kamaly, N. & Farokhzad, O. C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res. 44, 1123–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116, 2826–2885 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Pacardo, D. B., Ligler, F. S. & Gu, Z. Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale 7, 3381–3391 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Koetting, M. C., Peters, J. T., Steichen, S. D. & Peppas, N. A. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. Rep. 93, 1–49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de la Rica, R., Aili, D. & Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 64, 967–978 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Correa, S., Dreaden, E. C., Gu, L. & Hammond, P. T. Engineering nanolayered particles for modular drug delivery. J. Control. Release 240, 364–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kemp, J. A., Shim, M. S., Heo, C. Y. & Kwon, Y. J. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, X., Ho, W., Zhang, X., Bertrand, N. & Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21, 223–232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabernero, J. et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 3, 406–417 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Reddy, L. H. & Couvreur, P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol. 55, 1461–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, A. Z. et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther. 8, 1063–1070 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lyseng-Williamson, K. A., Duggan, S. T. & Keating, G. M. Pegylated liposomal doxorubicin: a guide to its use in various malignancies. BioDrugs 27, 533–540 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Barenholz, Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Harrison, M., Tomlinson, D. & Stewart, S. Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi's sarcoma. J. Clin. Oncol. 13, 914–920 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Money-Kyrle, J. F. et al. Liposomal daunorubicin in advanced Kaposi's sarcoma: a phase II study. Clin. Oncol. 5, 367–371 (1993).

    Article  CAS  Google Scholar 

  33. Rosenthal, E. et al. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am. J. Clin. Oncol. 25, 57–59 (2002).

    Article  PubMed  Google Scholar 

  34. Meyerhoff, A. U.S. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin. Infect. Dis. 28, 42–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Khemapech, N., Oranratanaphan, S., Termrungruanglert, W., Lertkhachonsuk, R. & Vasurattana, A. Salvage chemotherapy in recurrent platinum-resistant or refractory epithelial ovarian cancer with Carboplatin and distearoylphosphatidylcholine pegylated liposomal Doxorubicin (Lipo-Dox®). Asian Pac. J. Cancer Prev. 14, 2131–2135 (2013).

    Article  PubMed  Google Scholar 

  36. Glantz, M. J. et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 5, 3394–3402 (1999).

    CAS  PubMed  Google Scholar 

  37. Batist, G. et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. 19, 1444–1454 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Agosta, E. et al. Pharmacogenetics of antiangiogenic and antineovascular therapies of age-related macular degeneration. Pharmacogenomics 13, 1037–1053 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Gabizon, A. et al. An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother. Pharmacol. 61, 695–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gambling, D., Hughes, T., Martin, G., Horton, W. & Manvelian, G. A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth. Analg. 100, 1065–1074 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Venkatakrishnan, K. et al. Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate hepatic impairment. Br. J. Clin. Pharmacol. 77, 998–1010 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Ingram, I. FDA approves liposomal vincristine (Marqibo) for rare leukemia. Oncology (Williston Park) 26, 841 (2012).

    Google Scholar 

  43. Silverman, J. A. & Deitcher, S. R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 71, 555–564 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Gabizon, A., Shmeeda, H. & Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42, 419–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 132, 171–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Singla, A. K., Garg, A. & Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 235, 179–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Kundranda, M. N. & Niu, J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des. Devel. Ther. 9, 3767–3777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Z. & Chen, X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 45, 1432–1456 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ibrahim, N. K. et al. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 23, 6019–6026 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Rajeshkumar, N. V. et al. Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. Br. J. Cancer 115, 442–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, S. R. et al. A multi-center, late phase II clinical trial of Genexol (paclitaxel) and cisplatin for patients with advanced gastric cancer. Oncol. Rep. 12, 1059–1064 (2004).

    CAS  PubMed  Google Scholar 

  53. Kim, T. Y. et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Ediriwickrema, A., Zhou, J., Deng, Y. & Saltzman, W. M. Multi-layered nanoparticles for combination gene and drug delivery to tumors. Biomaterials 35, 9343–9354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Talelli, M. et al. Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today 10, 93–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nishiyama, N., Matsumura, Y. & Kataoka, K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci. 107, 867–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cabral, H. & Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release 190, 465–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Batrakova, E. V. & Kabanov, A. V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maeda, H., Bharate, G. Y. & Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm 71, 409–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Oldham, E. A. Li, C., Ke, S., Wallace, S. & Huang, P. Comparison of action of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in human breast cancer cells. Int. J. Oncol. 16, 125–132 (2000).

    CAS  PubMed  Google Scholar 

  61. Duncan, R. Polymer therapeutics: top 10 selling pharmaceuticals — what next? J. Control. Release 190, 371–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Espelin, C. W., Leonard, S. C., Geretti, E., Wickham, T. J. & Hendriks, B. S. Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res. 76, 1517–1527 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl Med. 4, 128ra139 (2012).

    Article  Google Scholar 

  65. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lancet, J. E. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J. Clin. Oncol. 34 (Suppl.), 7000 (2016).

    Article  Google Scholar 

  67. Kannan, R. M., Nance, E., Kannan, S. & Tomalia, D. A. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276, 579–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Roy, U. et al. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond.) 10, 3597–3609 (2015).

    Article  CAS  Google Scholar 

  69. Mignani, S., El Kazzouli, S., Bousmina, M. & Majoral, J. P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv. Drug Deliv. Rev. 65, 1316–1330 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Dreaden, E. C., Mackey, M. A., Huang, X., Kang, B. & El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40, 3391–3404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anselmo, A. C. & Mitragotri, S. A. Review of clinical translation of inorganic nanoparticles. AAPS J. 17, 1041–1054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giljohann, D. A. et al. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49, 3280–3294 (2010).

    Article  CAS  Google Scholar 

  73. Paithankar, D. et al. Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. J. Control Release 206, 30–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, Y. & Yu, C. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine 12, 317–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Meng, H. et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9, 3540–3557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Maier-Hauff, K. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron–oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011).

    Article  PubMed  Google Scholar 

  78. Maggiorella, L. et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 8, 1167–1181 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Field, J. A. et al. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. Chemosphere 84, 1401–1407 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Libutti, S. K. et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16, 6139–6149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, J., Gupta, S. & Li, C. Research perspectives: gold nanoparticles in cancer theranostics. Quant. Imaging Med. Surg. 3, 284–291 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Fortuin, A. S., Meijer, H., Thompson, L. C., Witjes, J. A. & Barentsz, J. O. Ferumoxtran-10 ultrasmall superparamagnetic iron oxide-enhanced diffusion-weighted imaging magnetic resonance imaging for detection of metastases in normal-sized lymph nodes in patients with bladder and prostate cancer: do we enter the era after extended pelvic lymph node dissection? Eur. Urol. 64, 961–963 (2013).

    Article  PubMed  Google Scholar 

  83. Hedgire, S. S. et al. Enhanced primary tumor delineation in pancreatic adenocarcinoma using ultrasmall super paramagnetic iron oxide nanoparticle-ferumoxytol: an initial experience with histopathologic correlation. Int. J. Nanomedicine 9, 1891–1896 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rivera Gil, P., Huhn, D., del Mercato, L. L., Sasse, D. & Parak, W. J. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res. 62, 115–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Tolcher, A. W. et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73, 363–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Schultheis, B. et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 32, 4141–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl Med. 5, 209ra152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Islam, M. A. et al. Biomaterials for mRNA delivery. Biomater. Sci. 3, 1519–1533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, J. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11, 895–905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, I. H. et al. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release 155, 435–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Park, B. H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9, 533–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Yildiz, I., Shukla, S. & Steinmetz, N. F. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol. 22, 901–908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Czapar, A. E. et al. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano 10, 4119–4126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parato, K. A. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 20, 749–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Batrakova, E. V. & Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 219, 396–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Morrison, E. E., Bailey, M. A. & Dear, J. W. Renal extracellular vesicles: from physiology to clinical application. J. Physiol. 594, 5735–5748 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alvarez, M. L., Khosroheidari, M., Kanchi Ravi, R. & DiStefano, J. K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 82, 1024–1032 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Bitzer, M., Ben-Dov, I. Z. & Thum, T. Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int. 82, 375–377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chow, E. K. et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl Med. 3, 73ra21 (2011).

    Article  PubMed  Google Scholar 

  100. Mochalin, V. N. et al. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10, 3728–3735 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Ho, D. Nanodiamond-based chemotherapy and imaging. Cancer Treat. Res. 166, 85–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Jiang, T. et al. Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater. 27, 1021–1028 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, Z., Robinson, J. T., Sun, X. & Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Valencia, P. M. et al. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (Lond.) 8, 687–698 (2013).

    Article  CAS  Google Scholar 

  105. Kim, J., Kim, J., Jeong, C. & Kim, W. J. Synergistic nanomedicine by combined gene and photothermal therapy. Adv. Drug Deliv. Rev. 98, 99–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Mura, S. & Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64, 1394–1416 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Kenny, G. D. et al. Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J. Control. Release 149, 111–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Liang, C., Xu, L., Song, G. & Liu, Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev. http://dx.doi.org/10.1039/C6CS00458J (2016).

  109. Hessel, C. M. et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560–2566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ferreira, M. M., Bismuth, J. & Torresani, J. Reversible dissociation of triiodothyronine-nuclear receptor complexes by mercurial and chaotropic reagents. Biochem. Biophys. Res. Commun. 105, 244–251 (1982).

    Article  CAS  PubMed  Google Scholar 

  111. Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Ilyinskii, P. O. et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 32, 2882–2895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Swartz, M. A., Hirosue, S. & Hubbell, J. A. Engineering approaches to immunotherapy. Sci. Transl Med. 4, 148rv149 (2012).

    Article  CAS  Google Scholar 

  114. Smith, D. M., Simon, J. K. & Baker, J. R. Jr. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13, 592–605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rosenthal, J. A., Chen, L., Baker, J. L., Putnam, D. & DeLisa, M. P. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr. Opin. Biotechnol. 28, 51–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Stary, G. et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T. cells. Science 348, aaa8205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kodaira, H. et al. The targeting of anionized polyvinylpyrrolidone to the renal system. Biomaterials 25, 4309–4315 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Borgman, M. P. et al. Tumor-targeted HPMA copolymer-(RGDfK)–(CHX-A''-DTPA) conjugates show increased kidney accumulation. J. Control. Release 132, 193–199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Qiao, H. et al. Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials 35, 7157–7171 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Yuan, Z. X. et al. Specific renal uptake of randomly 50% N-acetylated low molecular weight chitosan. Mol. Pharm. 6, 305–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Dolman, M. E., Harmsen, S., Storm, G., Hennink, W. E. & Kok, R. J. Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv. Drug Deliv. Rev. 62, 1344–1357 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Leeuwis, J. W., Nguyen, T. Q., Dendooven, A., Kok, R. J. & Goldschmeding, R. Targeting podocyte-associated diseases. Adv. Drug Deliv. Rev. 62, 1325–1336 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Dolman, M. E. et al. Dendrimer-based macromolecular conjugate for the kidney-directed delivery of a multitargeted sunitinib analogue. Macromol. Biosci. 12, 93–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Yuan, Z. X. et al. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on the renal targeting. J. Drug Target. 19, 540–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Gao, S. et al. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Theranostics 4, 1039–1051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Suana, A. J. et al. Single application of low-dose mycophenolate mofetil-OX7-immunoliposomes ameliorates experimental mesangial proliferative glomerulonephritis. J. Pharmacol. Exp. Ther. 337, 411–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Tuffin, G., Huwyler, J., Waelti, E., Hammer, C. & Marti, H. P. Drug targeting using OX7-immunoliposomes: correlation between Thy1.1 antigen expression and tissue distribution in the rat. J. Drug Target. 16, 156–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Morimoto, K. et al. Advances in targeting drug delivery to glomerular mesangial cells by long circulating cationic liposomes for the treatment of glomerulonephritis. Pharm. Res. 24, 946–954 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Tuffin, G., Waelti, E., Huwyler, J., Hammer, C. & Marti, H. P. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J. Am. Soc. Nephrol. 16, 3295–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Scindia, Y., Deshmukh, U., Thimmalapura, P. R. & Bagavant, H. Anti-α8 integrin immunoliposomes in glomeruli of lupus-susceptible mice: a novel system for delivery of therapeutic agents to the renal glomerulus in systemic lupus erythematosus. Arthritis Rheum. 58, 3884–3891 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Monti, D. M. et al. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. J. Biotechnol. 193, 3–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, H. et al. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv. Mater. 26, 6761–6766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, X. D. et al. Passing through the renal clearance barrier: toward ultrasmall sizes with stable ligands for potential clinical applications. Int. J. Nanomedicine 9, 2069–2072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.) 3, 703–717 (2008).

    Article  CAS  Google Scholar 

  136. Zarschler, K. et al. Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical applications. Nanomedicine 12, 1663–1701 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Nair, A. V., Keliher, E. J., Core, A. B., Brown, D. & Weissleder, R. Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo. ACS Nano 9, 3641–3653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, X. et al. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int. J. Nanomedicine 10, 1–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. L'Azou, B. et al. In vitro effects of nanoparticles on renal cells. Part. Fibre Toxicol. 5, 22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, Z. et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163, 109–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Liao, J. et al. Effect of steroid-liposome on immunohistopathology of IgA nephropathy in ddY mice. Nephron 89, 194–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Ito, K. et al. Liposome-mediated transfer of nitric oxide synthase gene improves renal function in ureteral obstruction in rats. Kidney Int. 66, 1365–1375 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Pridgen, E. M., Alexis, F. & Farokhzad, O. C. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin. Drug Deliv. 12, 1459–1473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl Med. 5, 213ra167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Beloqui, A., des Rieux, A. & Preat, V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv. Drug Deliv. Rev. http://dx.doi.org/10.1016/j.addr.2016.04.014 (2016).

  146. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhu, X. et al. Polymeric nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins. Angew. Chem. Int. Ed. 55, 3309–3312 (2016).

    Article  CAS  Google Scholar 

  148. Choi, K. Y., Liu, G., Lee, S. & Chen, X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cedervall, T. et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. 46, 5754–5756 (2007).

    Article  CAS  Google Scholar 

  151. Lynch, I., Salvati, A. & Dawson, K. A. Protein–nanoparticle interactions: what does the cell see? Nat. Nanotechnol. 4, 546–547 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Ritz, S. et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16, 1311–1321 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Ogawara, K. et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J. Control. Release 100, 451–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Mahmoudi, M. et al. Protein–nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Chanan-Khan, A. et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann. Oncol. 14, 1430–1437 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Schottler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sakulkhu, U. et al. Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale 6, 11439–11450 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Bigdeli, A. et al. Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 10, 3723–3737 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Choi, C. H., Zuckerman, J. E., Webster, P. & Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl Acad. Sci. USA 108, 6656–6661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang, Q. & Lai, S. K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ishida, T. et al. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J. Control. Release 105, 305–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Ichihara, M. et al. Anti-PEG IgM response against PEGylated liposomes in mice and rats. Pharmaceutics 3, 1–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dams, E. T. et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther. 292, 1071–1079 (2000).

    CAS  PubMed  Google Scholar 

  172. Kalra, A. V. et al. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 74, 7003–7013 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Koizumi, F. et al. Novel SN-38-incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor-secreting bulky tumors. Cancer Res. 66, 10048–10056 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Nakajima, T. E. et al. Antitumor effect of SN-38-releasing polymeric micelles, NK012, on spontaneous peritoneal metastases from orthotopic gastric cancer in mice compared with irinotecan. Cancer Res. 68, 9318–9322 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Hamaguchi, T. et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer 92, 1240–1246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nagai, N. et al. Relationship between pharmacokinetics of unchanged cisplatin and nephrotoxicity after intravenous infusions of cisplatin to cancer patients. Cancer Chemother. Pharmacol. 39, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Barpe, D. R., Rosa, D. D. & Froehlich, P. E. Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur. J. Pharm. Sci. 41, 458–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Puelles, V. G. et al. Glomerular number and size variability and risk for kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 7–15 (2011).

    Article  PubMed  Google Scholar 

  179. Eaton, D. C., Pooler, J. Vander's Renal Physiology 8th edn (McGraw-Hill Medical Publishing, 2013).

    Google Scholar 

  180. Satchell, S. The role of the glomerular endothelium in albumin handling. Nat. Rev. Nephrol. 9, 717–725 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Miner, J. H. The glomerular basement membrane. Exp. Cell Res. 318, 973–978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Armelloni, S. et al. Podocytes: recent biomolecular developments. Biomol. Concepts 5, 319–330 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Abboud, H. E. Mesangial cell biology. Exp. Cell Res. 318, 979–985 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Shankland, S. J., Smeets, B., Pippin, J. W. & Moeller, M. J. The emergence of the glomerular parietal epithelial cell. Nat. Rev. Nephrol. 10, 158–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Brown, D. & Wagner, C. A. Molecular mechanisms of acid–base sensing by the kidney. J. Am. Soc. Nephrol. 23, 774–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chang, R. L., Deen, W. M., Robertson, C. R. & Brenner, B. M. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int. 8, 212–218 (1975).

    Article  CAS  PubMed  Google Scholar 

  187. Mallipattu, S. K. & He, J. C. A new mechanism for albuminuria-induced podocyte injury. J. Am. Soc. Nephrol. 24, 1709–1711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zuckerman, J. E. & Davis, M. E. Targeting therapeutics to the glomerulus with nanoparticles. Adv. Chronic Kidney Dis. 20, 500–507 (2013).

    Article  PubMed  Google Scholar 

  191. Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond.) 9, 121–134 (2014).

    Article  CAS  Google Scholar 

  192. Rolland, J. P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Xu, J. et al. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. 52, 6580–6589 (2013).

    Article  CAS  Google Scholar 

  194. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Park, J. H. et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20, 1630–1635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chauhan, V. P. et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. 50, 11417–11420 (2011).

    Article  CAS  Google Scholar 

  198. Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–2318 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Ruggiero, A. et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107, 12369–12374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Champion, J. A., Katare, Y. K. & Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121, 3–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  202. Alidori, S. et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl Med. 8, 331ra339 (2016).

    Article  CAS  Google Scholar 

  203. Lacerda, L. et al. Carbon-nanotube shape and individualization critical for renal excretion. Small 4, 1130–1132 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Gustafson, H. H., Holt-Casper, D., Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today 10, 487–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 6, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Yamamoto, Y., Nagasaki, Y., Kato, Y., Sugiyama, Y. & Kataoka, K. Long-circulating poly(ethylene glycol)–poly(D,L-lactide) block copolymer micelles with modulated surface charge. J. Control. Release 77, 27–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6, 659–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Zhu, X. et al. Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc. Natl Acad. Sci. USA 112, 7779–7784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Liang, X. et al. Short- and long-term tracking of anionic ultrasmall nanoparticles in kidney. ACS Nano 10, 387–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Satchell, S. C. & Braet, F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am. J. Physiol. Renal Physiol. 296, F947–F956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Curry, F. E. & Adamson, R. H. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann. Biomed. Eng. 40, 828–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Deen, W. M., Lazzara, M. J. & Myers, B. D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, F579–F596 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Lal, M. A., Young, K. W. & Andag, U. Targeting the podocyte to treat glomerular kidney disease. Drug Discov. Today 20, 1228–1234 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Wu, H. Y. et al. Diagnostic performance of random urine samples using albumin concentration versus ratio of albumin to creatinine for microalbuminuria v screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA Intern. Med. 174, 1108–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Dritschilo, A. et al. Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin. Cancer Res. 12, 1251–1259 (2006).

    Article  CAS  PubMed  Google Scholar 

  220. Elazar, V. et al. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. Int. J. Cancer 126, 1749–1760 (2010).

    CAS  PubMed  Google Scholar 

  221. Asgeirsdottir, S. A. et al. Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am. J. Physiol. Renal Physiol. 294, F554–F561 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Groffen, A. J. et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J. Histochem. Cytochem. 46, 19–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  223. Hironaka, K., Makino, H., Yamasaki, Y. & Ota, Z. Pores in the glomerular basement membrane revealed by ultrahigh-resolution scanning electron microscopy. Nephron 64, 647–649 (1993).

    Article  CAS  PubMed  Google Scholar 

  224. Suleiman, H. et al. Nanoscale protein architecture of the kidney glomerular basement membrane. eLife 2, e01149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kashtan, C. E. Alport syndrome & thin basement membrane nephropathy. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1207/ (updated 25 Nov 2015).

  226. Mohney, B. G. et al. A novel mutation of LAMB2 in a multigenerational mennonite family reveals a new phenotypic variant of Pierson syndrome. Ophthalmology 118, 1137–1144 (2011).

    Article  PubMed  Google Scholar 

  227. Kamaly, N. et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zuckerman, J. E., Choi, C. H., Han, H. & Davis, M. E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA 109, 3137–3142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Tryggvason, K. Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J. Am. Soc. Nephrol. 10, 2440–2445 (1999).

    CAS  PubMed  Google Scholar 

  230. Tassin, M. T., Beziau, A., Gubler, M. C. & Boyer, B. Spatiotemporal expression of molecules associated with junctional complexes during the in vivo maturation of renal podocytes. Int. J. Dev. Biol. 38, 45–54 (1994).

    CAS  PubMed  Google Scholar 

  231. Mallipattu, S. K. & He, J. C. The podocyte as a direct target for treatment of glomerular disease? Am. J. Physiol. Renal Physiol. 311, F46–F51 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Visweswaran, G. R. et al. Targeting rapamycin to podocytes using a vascular cell adhesion molecule-1 (VCAM-1)-harnessed SAINT-based lipid carrier system. PLoS ONE 10, e0138870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Chiang, W. C. et al. Establishment of protein delivery systems targeting podocytes. PLoS ONE 5, e11837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chaudhury, C. et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. 197, 315–322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  236. Maile, L. A. et al. Blocking ligand occupancy of the αVβ3 integrin inhibits the development of nephropathy in diabetic pigs. Endocrinology 155, 4665–4675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Maile, L. A. et al. Blocking αVβ3 integrin ligand occupancy inhibits the progression of albuminuria in diabetic rats. J. Diabetes Res. 2014, 421827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Pollinger, K. et al. Kidney podocytes as specific targets for cyclo(RGDfC)-modified nanoparticles. Small 8, 3368–3375 (2012).

    Article  CAS  PubMed  Google Scholar 

  239. Zuckerman, J. E., Gale, A., Wu, P., Ma, R. & Davis, M. E. siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Ther. 25, 53–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ramos, A. M. et al. Designing drugs that combat kidney damage. Expert Opin. Drug Discov. 10, 541–556 (2015).

    Article  CAS  PubMed  Google Scholar 

  241. Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J. & Nguyen, T. Q. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat. Rev. Nephrol. 11, 233–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  242. Morishita, Y. et al. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci. Rep. 4, 6424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zheng, X. et al. Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes. Transplantation 82, 1781–1786 (2006).

    Article  CAS  PubMed  Google Scholar 

  244. Williams, R. M. et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15, 2358–2364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dolman, M. E. et al. Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells. Int. J. Nanomedicine 7, 417–433 (2012).

    CAS  PubMed  Google Scholar 

  246. Morishita, Y. et al. Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int. J. Nanomedicine 10, 3475–3488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Pascual, D. & Borque, A. Epidemiology of kidney cancer. Adv. Urol. 2008, 782381 (2008).

    Article  PubMed Central  Google Scholar 

  248. Koshkina, N. V. et al. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin. Cancer Res. 7, 3258–3262 (2001).

    CAS  PubMed  Google Scholar 

  249. Boorjian, S. A. et al. Phase 1/2 clinical trial of interferon α2b and weekly liposome-encapsulated all-trans retinoic acid in patients with advanced renal cell carcinoma. J. Immunother. 30, 655–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  250. Kulkarni, A. A., Vijaykumar, V. E., Natarajan, S. K., Sengupta, S. & Sabbisetti, V. S. Sustained inhibition of cMET–VEGFR2 signaling using liposome-mediated delivery increases efficacy and reduces toxicity in kidney cancer. Nanomedicine 12, 1853–1861 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Liu, J. et al. Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma. J. Pharm. Sci. 104, 1187–1196 (2015).

    Article  CAS  PubMed  Google Scholar 

  252. Takaha, N. et al. Significant induction of apoptosis in renal cell carcinoma cells transfected with cationic multilamellar liposomes containing the human interferon-β gene through activation of the intracellular type 1 interferon signal pathway. Int. J. Oncol. 40, 1441–1446 (2012).

    CAS  PubMed  Google Scholar 

  253. Umebayashi, M., Makizono, T., Ichihara, H., Matsumoto, Y. & Ueoka, R. Inhibitory effects of cationic hybrid liposomes on the growth of human renal cell carcinoma. Anticancer Res. 30, 327–337 (2010).

    CAS  PubMed  Google Scholar 

  254. Umebayashi, M., Matsumoto, Y. & Ueoka, R. Inhibitory effects of three-component hybrid liposomes containing cationic lipids without drugs on the growth of human renal tumor cells in vitro. Biol. Pharm. Bull. 31, 1816–1817 (2008).

    Article  CAS  PubMed  Google Scholar 

  255. Yamamoto, K. et al. Significant antitumor activity of cationic multilamellar liposomes containing human interferon-β gene in combination with 5-fluorouracil against human renal cell carcinoma. Int. J. Oncol. 33, 565–571 (2008).

    CAS  PubMed  Google Scholar 

  256. Nakanishi, H. et al. Significant antitumoral activity of cationic multilamellar liposomes containing human IFN-β gene against human renal cell carcinoma. Clin. Cancer Res. 9, 1129–1135 (2003).

    CAS  PubMed  Google Scholar 

  257. Skubitz, K. M. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in renal cell cancer. Invest. New Drugs 20, 101–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  258. Tian, J. Q. et al. In vitro enhanced cytotoxicity of tumor-infiltrating lymphocytes transfected with tumor necrosis factor-related apoptosis-inducing ligand and/or interleukin-2 gene in human renal cell carcinoma. Urology 67, 1093–1098 (2006).

    Article  PubMed  Google Scholar 

  259. Akita, H. et al. A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma. J. Control. Release 200, 97–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  260. Yalcin, M. et al. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 29, 3825–3831 (2009).

    CAS  PubMed  Google Scholar 

  261. Kasenda, B., Larkin, J. & Gore, M. Immunotherapies in early and advanced renal cell cancer. Prog. Tumor Res. 42, 1–10 (2015).

    Article  PubMed  Google Scholar 

  262. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  263. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    Article  CAS  PubMed  Google Scholar 

  264. Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl Med. 7, 314ra183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Ramanathan, R. K. et al. Pilot study in patients with advanced solid tumors to evaluate feasibility of ferumoxytol (FMX) as tumor imaging agent prior to MM398, a nanoliposomal irinotecan (nalIRI) [abstract]. Cancer Res. 74 (19 Suppl.), CT224 (2014).

    Google Scholar 

  267. Koukourakis, M. I. et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol. 17, 3512–3521 (1999).

    Article  CAS  PubMed  Google Scholar 

  268. Arrieta, O. et al. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with 99mTc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal doxorubicin and cisplatin. Cancer Chemother. Pharmacol. 74, 211–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  269. Grenier, N., Merville, P. & Combe, C. Radiologic imaging of the renal parenchyma structure and function. Nat. Rev. Nephrol. 12, 348–359 (2016).

    Article  PubMed  Google Scholar 

  270. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  271. Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  272. Jang, K. J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. (Camb.) 5, 1119–1129 (2013).

    Article  CAS  Google Scholar 

  273. Jang, K. J. & Suh, K. Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  274. Snouber, L. C. et al. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin–Darby canine kidney cell function in a renal microfluidic biochip. Biotechnol. Prog. 28, 474–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  275. Zhou, M., Ma, H., Lin, H. & Qin, J. Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials 35, 1390–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  276. Kim, S. & Takayama, S. Organ-on-a-chip and the kidney. Kidney Res. Clin. Pract. 34, 165–169 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Adler, M. et al. A quantitative approach to screen for nephrotoxic compounds in vitro. J. Am. Soc. Nephrol. 27, 1015–1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  278. Kim, S. et al. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8, 015021 (2016).

    Article  PubMed  Google Scholar 

  279. Mae, S. et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat. Commun. 4, 1367 (2013).

    Article  CAS  PubMed  Google Scholar 

  280. Schmidt-Ott, K. M. How to grow a kidney: patient-specific kidney organoids come of age. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw256 (2016).

  281. Li, Z. et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell 19, 516–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  283. Takasato, M. & Little, M. H. A strategy for generating kidney organoids: recapitulating the development in human pluripotent stem cells. Dev. Biol. http://dx.doi.org/10.1016/j.ydbio.2016.08.024 (2016).

  284. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  285. Reininger-Mack, A., Thielecke, H. & Robitzki, A. A. 3D-biohybrid systems: applications in drug screening. Trends Biotechnol. 20, 56–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  286. Astashkina, A. I. et al. Nanoparticle toxicity assessment using an in vitro 3D kidney organoid culture model. Biomaterials 35, 6323–6331 (2014).

    Article  CAS  PubMed  Google Scholar 

  287. Astashkina, A. I., Mann, B. K., Prestwich, G. D. & Grainger, D. W. A. 3D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials 33, 4700–4711 (2012).

    Article  CAS  PubMed  Google Scholar 

  288. Valencia, P. M. et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 7, 10671–10680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Karnik, R. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 8, 2906–2912 (2008).

    Article  CAS  PubMed  Google Scholar 

  291. Valencia, P. M. et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4, 1671–1679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Rhee, M. et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv. Mater. 23, H79–H83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  294. Kim, Y. et al. Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 12, 3587–3591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Lim, J. M. et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 8, 6056–6065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Zuckerman, J. E. et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Natl Acad. Sci. USA 111, 11449–11454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Eliasof, S. et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl Acad. Sci. USA 110, 15127–15132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Kohan, D. E. Kidney cell-specific knockdown: anything but simple. Am. J. Physiol. Renal Physiol. 309, F1007–F1008 (2015).

    Article  CAS  PubMed  Google Scholar 

  299. de Caestecker, M. et al. Bridging translation by improving preclinical study design in AKI. J. Am. Soc. Nephrol. 26, 2905–2916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT00617981?term (2014).

  301. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl Med. 3, 10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

O.C.F acknowledges support from the NHLBI HL127464, NCI CA151884, NIBIB EB015419 and the David Koch-Prostate Cancer Foundation Award in Nanotherapeutics. J.C.H is supported by NIH 1R01DK078897, NIH 1R01DK088541, NIH P01-DK-56492, Chinese 973 fund 2012CB517601.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the article's content, writing, and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Omid C. Farokhzad.

Ethics declarations

Competing interests

O.C.F. has financial interests in Selecta Biosciences, Tarveda Therapeutics, and Placon Therapeutics. D.A.A serves on the Board of Directors of Pfizer, Alnylam Pharmaceuticals, Seres Therapeutics, Tarveda Therapeutics and Placon Therapeutics. The other authors declare no competing interests.

PowerPoint slides

Glossary

Nanoparticles

Nanoscale particles with modifiable shape and charge capable of carrying a specific payload (drugs, diagnostic molecules etc.).

Colloid

Substance formed by a non-crystalline material (here nanomaterial) of either natural or synthetic origin dispersed in a solution.

Organ-on-a-chip

Microfluidic devices used to culture living cells under continuous perfusion in micorometer-sized chambers; they are primarily used to reproduce the physiological functions of tissues and organs as closely as possible.

PEGylation

Attachment of polyethers to the surface of nanoparticles in order to minimize unwanted interactions with their biological surroundings.

Cmax

Maximal serum concentration of a drug or nanoparticle achievable after administration.

Top-down fabrication method

Synthesis of a structure by etching or removal of material from a template or substrate to achieve specific shapes or sizes.

Particle replication in non-wetting templates

Fabrication technique whereby a pre-particle solution is distributed in a mould with nanosized cavities to generate nanoparticles with precisely defined shape, size, composition and surface properties.

Aspect ratio

Ratio of the width to the height of a nanoparticle.

Enhanced permeability and retention (EPR) effect

Describes the accumulation and retention of colloidal nanoparticles within tumour tissue as a result of increased endothelial gap junction distances due to heterogeneous vessel formation and growth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaly, N., He, J., Ausiello, D. et al. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 12, 738–753 (2016). https://doi.org/10.1038/nrneph.2016.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing