Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiological principles underlying the kidney targeting of renal nanomedicines

Abstract

Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.

Key points

  • Despite considerable advances in cancer nanomedicines, renal nanomedicines for the treatment of kidney diseases are markedly underdeveloped.

  • The physiological principles that regulate the glomerular filtration, tubular secretion, luminal tubular uptake and re-elimination of nanoparticles in the kidneys may facilitate the selective targeting of nanoparticles to specific segments of the nephron.

  • Targeting of nanoparticles to different cell types in the glomerulus or to the glomerular basement membrane can be achieved through fine-tuning of their physicochemical properties based on our understanding of glomerular filtration and the glomerular filtration barrier.

  • Different transport pathways can be used to deliver nanoparticles to different components of the renal tubules, including the luminal and the basolateral sides of tubular epithelial cells and the interstitium.

  • Differences in nanoparticle transport and interactions between healthy and diseased kidney tissues offer opportunities for the design of nanoparticles that can selectively target specific kidney diseases.

  • A newly discovered organelle extrusion mechanism facilitates the elimination of endocytosed nanoparticles from the kidneys and may minimize the nephrotoxicity of future nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glomerular filtration of nanoparticles.
Fig. 2: Representative nanoparticles eliminated by the kidneys through glomerular filtration.
Fig. 3: Tubular secretion and luminal tubular uptake of nanoparticles.
Fig. 4: Representative nanoparticles that are processed by the kidney tubules.
Fig. 5: Representative nanomedicines that target the glomerulus.
Fig. 6: Targeting of nanoparticles to proximal tubules in the healthy and injured kidney.
Fig. 7: Representative nanomedicines that target the renal tubules and interstitium.
Fig. 8: Proximal tubular extrusion of endocytosed gold nanoparticles by proximal tubule epithelial cells.

Similar content being viewed by others

References

  1. Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Peng, C., Huang, Y. & Zheng, J. Renal clearable nanocarriers: overcoming the physiological barriers for precise drug delivery and clearance. J. Control. Rel. 322, 64–80 (2020).

    Article  CAS  Google Scholar 

  5. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Article  ADS  Google Scholar 

  6. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chauhan, V. P. & Jain, R. K. Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Davis, M. E., Chen, Z. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov. 7, 771–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. de Lázaro, I. & Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20, 1469–1479 (2021).

    Article  PubMed  ADS  Google Scholar 

  12. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Min, Y., Caster, J. M., Eblan, M. J. & Wang, A. Z. Clinical translation of nanomedicine. Chem. Rev. 115, 11147–11190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Boer, I. H. et al. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 98, S1–S115 (2020).

    Article  Google Scholar 

  15. Levin, A. et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

    Google Scholar 

  16. Breyer, M. D. & Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug. Discov. 15, 568–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Romagnani, P. et al. Chronic kidney disease. Nat. Rev. Dis. Prim. 3, 1–24 (2017).

    Google Scholar 

  19. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 120, c179–c184 (2012).

    Article  PubMed  Google Scholar 

  20. Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article  PubMed  Google Scholar 

  21. Bellomo, R., Kellum, J. A. & Ronco, C. Acute kidney injury. Lancet 380, 756–766 (2012).

    Article  PubMed  Google Scholar 

  22. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Sharma, K. et al. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol. 22, 1144–1151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amini, M., Salarifar, M., Amirbaigloo, A., Masoudkabir, F. & Esfahani, F. N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial. Trials 10, 45 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ye, M., Lin, W., Zheng, J. & Lin, S. N-acetylcysteine for chronic kidney disease: a systematic review and meta-analysis. Am. J. Transl. Res. 13, 2472–2485 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barr, L. F. & Kolodner, K. N-acetylcysteine and fenoldopam protect the renal function of patients with chronic renal insufficiency undergoing cardiac surgery. Crit. Care Med. 36, 1427–1435 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Ho, K. M. & Morgan, D. J. Meta-analysis of N-acetylcysteine to prevent acute renal failure after major surgery. Am. J. Kidney Dis. 53, 33–40 (2009).

    Article  PubMed  Google Scholar 

  28. Mainra, R., Gallo, K. & Moist, L. Effect of N‐acetylcysteine on renal function in patients with chronic kidney disease. Nephrology 12, 510–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sisillo, E. et al. N-acetylcysteine for prevention of acute renal failure in patients with chronic renal insufficiency undergoing cardiac surgery: a prospective, randomized, clinical trial. Crit. Care Med. 36, 81–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Stokman, G., Qin, Y., Rácz, Z., Hamar, P. & Price, L. S. Application of siRNA in targeting protein expression in kidney disease. Adv. Drug. Deliv. Rev. 62, 1378–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Peek, J. L. & Wilson, M. H. Cell and gene therapy for kidney disease. Nat. Rev. Nephrol. 19, 451–462 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Zhou, J., Krishnan, N., Jiang, Y., Fang, R. H. & Zhang, L. Nanotechnology for virus treatment. Nano Today 36, 101031 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Pison, U., Welte, T., Giersig, M. & Groneberg, D. A. Nanomedicine for respiratory diseases. Eur. J. Pharmacol. 533, 341–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Goldsmith, M., Abramovitz, L. & Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 8, 1958–1965 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Godin, B. et al. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci. 31, 199–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug. Discov. 14, 45–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kamaly, N., He, J. C., Ausiello, D. A. & Farokhzad, O. C. Nanomedicines for renal disease: current status and future applications. Nat. Rev. Nephrol. 12, 738–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams, R. M., Jaimes, E. A. & Heller, D. A. Nanomedicines for kidney diseases. Kidney Int. 90, 740–745 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  Google Scholar 

  43. Kunwar, A. et al. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta 1780, 673–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, Y., Yu, M. & Zheng, J. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. Nat. Nanotechnol. 18, 637–646 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Satchell, S. C. & Braet, F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am. J. Physiol. Ren. Physiol. 296, F947–F956 (2009).

    Article  CAS  Google Scholar 

  47. Avasthi, P. S., Evan, A. P. & Hay, D. Glomerular endothelial cells in uranyl nitrate-induced acute renal failure in rats. J. Clin. Invest. 65, 121–127 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lea, P. J., Silverman, M., Hegele, R. & Hollenberg, M. J. Tridimensional ultrastructure of glomerular capillary endothelium revealed by high-resolution scanning electron microscopy. Microvasc. Res. 38, 296–308 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Bearer, E. L. & Orci, L. Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J. Cell Biol. 100, 418–428 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeansson, M. & Haraldsson, B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am. J. Physiol. Ren. Physiol. 290, F111–F116 (2006).

    Article  CAS  Google Scholar 

  51. Singh, A. et al. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J. Am. Soc. Nephrol. 18, 2885–2893 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Naylor, R. W., Morais, M. R. P. T. & Lennon, R. Complexities of the glomerular basement membrane. Nat. Rev. Nephrol. 17, 112–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Miner, J. H. The glomerular basement membrane. Exp. Cell Res. 318, 973–978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miner, J. H. Renal basement membrane components. Kidney Int. 56, 2016–2024 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Palassini, M. & Remuzzi, A. Numerical analysis of viscous flow through fibrous media: a model for glomerular basement membrane permeability. Am. J. Physiol. Ren. Physiol. 274, F223–F231 (1998).

    Article  CAS  Google Scholar 

  56. Hironaka, K. et al. Ultrastructural change of the glomerular basement membrane in rats with Heymann nephritis revealed by ultrahigh resolution scanning electron microscopy. J. Pathol. 179, 112–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Hironaka, K., Makino, H., Yamasaki, Y. & Ota, Z. Renal basement membranes by ultrahigh resolution scanning electron microscopy. Kidney Int. 43, 334–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Hironaka, K., Makino, H., Yamasaki, Y. & Ota, Z. Pores in the glomerular basement membrane revealed by ultrahigh-resolution scanning electron microscopy. Nephron 64, 647–649 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Gagliardini, E., Conti, S., Benigni, A., Remuzzi, G. & Remuzzi, A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J. Am. Soc. Nephrol. 21, 2081–2089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Choi, C. H. J., Zuckerman, J. E., Webster, P. & Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl Acad. Sci. USA 108, 6656–6661 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Zuckerman, J. E., Choi, C. H. J., Han, H. & Davis, M. E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA 109, 3137–3142 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Rennke, H. G. & Venkatachalam, M. A. Glomerular permeability: In vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 11, 44–53 (1977).

    Article  CAS  PubMed  Google Scholar 

  63. Arturson, G. & Wallenius, G. The renal clearance of dextran of different molecular sizes in normal humans. Scand. J. Clin. Lab. Invest. 16, 81–86 (1964).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, C., Long, M., Qin, Y., Sun, X. & Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed. Engl. 50, 3168–3172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, C. et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. Engl. 51, 10118–10122 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Yu, M., Xu, J. & Zheng, J. Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew. Chem. Int. Ed. Engl. 58, 4112–4128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, S. et al. Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjug Chem. 26, 511–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang, S., Huang, Y. & Zheng, J. Salivary excretion of renal-clearable silver nanoparticles. Angew. Chem. Int. Ed. Engl. 59, 19894–19898 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tang, S. et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew. Chem. Int. Ed. Engl. 55, 16039–16043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xie, M. et al. Brain tumor imaging and delivery of sub-5 nm magnetic iron oxide nanoparticles in an orthotopic murine model of glioblastoma. ACS Appl. Nano Mater. 5, 9706–9718 (2022).

    Article  CAS  Google Scholar 

  71. Huang, J. et al. Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J. Mater. Chem. B 2, 5344–5351 (2014).

    Article  CAS  Google Scholar 

  72. Wei, H. et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl Acad. Sci. USA 114, 2325–2330 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Lux, F. et al. Ultrasmall rigid particles as multimodal probes for medical applications. Angew. Chem. Int. Ed. Engl. 50, 12299–12303 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lux, F. et al. AGuIX® from bench to bedside – transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br. J. Radiol. 92, 20180365 (2019).

    PubMed  Google Scholar 

  76. Kang, H. et al. Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater. 28, 8162–8168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kang, H. et al. Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors. Adv. Mater. 32, 1905899 (2020).

    Article  CAS  Google Scholar 

  78. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zanoni, D. K. et al. Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized clinical trial. JAMA Netw. Open. 4, e211936 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Verry, C. et al. Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. Sci. Adv. 6, eaay5279 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Liu, Z. et al. An ultrasmall RuO2 nanozyme exhibiting multienzyme-like activity for the prevention of acute kidney injury. ACS Appl. Mater. Interfaces 12, 31205–31216 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Ni, D. et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat. Commun. 9, 5421 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Shin, T.-H. et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat. Biomed. Eng. 5, 252–263 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Huang, J., Li, J., Lyu, Y., Miao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Cheng, P. et al. Artificial urinary biomarkers for early diagnosis of acute renal allograft rejection. Angew. Chem. Int. Ed. Engl. 62, e202306539 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra324 (2016).

    Article  Google Scholar 

  87. Bugaj, J. E. & Dorshow, R. B. Pre-clinical toxicity evaluation of MB-102, a novel fluorescent tracer agent for real-time measurement of glomerular filtration rate. Regul. Toxicol. Pharmacol. 72, 26–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03686215 (2023).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05425719 (2023).

  90. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Du, B. et al. Tailoring kidney transport of organic dyes with low-molecular-weight PEGylation. Bioconjug. Chem. 31, 241–247 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Caulfield, J. P. & Farquhar, M. G. Distribution of annionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc. Natl Acad. Sci. USA 73, 1646–1650 (1976).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Kanwar, Y. S. & Farquhar, M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl Acad. Sci. USA 76, 1303–1307 (1979).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Bohrer, M. P. et al. Permselectivity of the glomerular capillary wall: facilitated filtration of circulating polycations. J. Clin. Invest. 61, 72–78 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brenner, B. M., Hostetter, T. H. & Humes, H. D. Glomerular permselectivity: barrier function based on discrimination of molecular size and charge. Am. J. Physiol. Ren. Physiol. 234, F455–F460 (1978).

    Article  CAS  Google Scholar 

  96. Chang, R. L. S., Deen, W. M., Robertson, C. R. & Brenner, B. M. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int. 8, 212–218 (1975).

    Article  CAS  PubMed  Google Scholar 

  97. Comper, W. D. & Glasgow, E. F. Charge selectivity in kidney ultrafiltration. Kidney Int. 47, 1242–1251 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Adal, Y., Pratt, L. & Comper, W. D. Transglomerular transport of DEAE dextran in the isolated perfused kidney. Microcirculation 1, 169–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Asgeirsson, D., Venturoli, D., Rippe, B. & Rippe, C. Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am. J. Physiol. Ren. Physiol. 291, F1083–F1089 (2006).

    Article  CAS  Google Scholar 

  100. Sirich, T. L., Aronov, P. A., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 84, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anzai, N., Jutabha, P. & Endou, H. Molecular mechanism of ochratoxin a transport in the kidney. Toxins 2, 1381–1398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Landersdorfer, C. B. et al. Competitive inhibition of renal tubular secretion of gemifloxacin by probenecid. Antimicrob. Agents Chemother. 53, 3902–3907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fritzberg, A. R., Kasina, S., Eshima, D. & Johnson, D. L. Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran. Replacement. J. Nucl. Med. 27, 111–116 (1986).

    CAS  PubMed  Google Scholar 

  104. Müller-Suur, R. & Müller-Suur, C. Glomerular filtration and tubular secretion of MAG-3 in the rat kidney. J. Nucl. Med. 30, 1986–1991 (1989).

    PubMed  Google Scholar 

  105. Burckhardt, G., Bahn, A. & Wolff, N. A. Molecular physiology of renal p-aminohippurate secretion. Physiol 16, 114–118 (2001).

    Article  CAS  Google Scholar 

  106. Du, B. et al. Hyperfluorescence imaging of kidney cancer enabled by renal secretion pathway dependent efflux transport. Angew. Chem. Int. Ed. Engl. 60, 351–359 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Alander, J. T. et al. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 940585 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Tahara, H. et al. Inhibition of OAT3-mediated renal uptake as a mechanism for drug-drug interaction between fexofenadine and probenecid. Drug. Metab. Dispos. 34, 743–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Naumenko, V. et al. Intravital microscopy reveals a novel mechanism of nanoparticles excretion in kidney. J. Control. Rel. 307, 368–378 (2019).

    Article  CAS  Google Scholar 

  111. Wyss, P. P. et al. Renal clearance of polymeric nanoparticles by mimicry of glycan surface of viruses. Biomaterials 230, 119643 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Williams, R. M. et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15, 2358–2364 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Williams, R. M. et al. Selective nanoparticle targeting of the renal tubules. Hypertension 71, 87–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Kurtzman, N. A. & Pillay, V. K. G. Renal reabsorption of glucose in health and disease. Arch. Intern. Med. 131, 901–904 (1973).

    Article  CAS  PubMed  Google Scholar 

  115. Russo, L. M. et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 71, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Tenten, V. et al. Albumin is recycled from the primary urine by tubular transcytosis. J. Am. Soc. Nephrol. 24, 1966–1980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cheng, P. & Pu, K. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 6, 1095–1113 (2021).

    Article  CAS  ADS  Google Scholar 

  118. Sancey, L. et al. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 9, 2477–2488 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. He, X.-K., Yuan, Z.-X., Wu, X.-J., Xu, C.-Q. & Li, W.-Y. Low molecular weight hydroxyethyl chitosan-prednisolone conjugate for renal targeting therapy: synthesis, characterization and in vivo studies. Theranostics 2, 1054–1063 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, D. et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci. Adv. 6, eabb7422 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  121. Matsuura, S. et al. l-Serine–modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. Proc. Natl Acad. Sci. USA 115, 10511–10516 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. Xie, D. et al. Kidney-targeted delivery of prolyl hydroxylase domain protein 2 small interfering RNA with nanoparticles alleviated renal ischemia/reperfusion injury. J. Pharmacol. Exp. Ther. 378, 235–243 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Oroojalian, F. et al. Efficient megalin targeted delivery to renal proximal tubular cells mediated by modified-polymyxin B-polyethylenimine based nano-gene-carriers. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 770–782 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Kok, R. J., Haas, M., Moolenaar, F., de Zeeuw, D. & Meijer, D. K. Drug delivery to the kidneys and the bladder with the low molecular weight protein lysozyme. Ren. Fail. 20, 211–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, Z. et al. The targeting of 14-succinate triptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials 30, 1372–1381 (2009).

    Article  PubMed  Google Scholar 

  126. Bidwell, I. I. I. et al. A kidney-selective biopolymer for targeted drug delivery. Am. J. Physiol. Ren. Physiol. 312, F54–F64 (2017).

    Article  CAS  Google Scholar 

  127. Chen, Y. et al. A promising NIR‐II fluorescent sensor for peptide‐mediated long‐term monitoring of kidney dysfunction. Angew. Chem. Int. Ed. Engl. 133, 15943–15949 (2021).

    Article  Google Scholar 

  128. Wang, J. et al. Design and in vivo characterization of kidney-targeting multimodal micelles for renal drug delivery. Nano Res. 11, 5584–5595 (2018).

    Article  CAS  Google Scholar 

  129. Franssen, E. J. F., Moolenaar, F., de Zeeuw, D. & Meijer, D. K. F. Drug targeting to the kidney with low-molecular-weight proteins. Adv. Drug. Deliv. Rev. 14, 67–88 (1994).

    Article  CAS  Google Scholar 

  130. Ordikhani, F. et al. Selective trafficking of light chain-conjugated nanoparticles to the kidney and renal cell carcinoma. Nano Today 35, 100990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamamoto, Y. et al. Poly(vinylpyrrolidone-co-dimethyl maleic acid) as a novel renal targeting carrier. J. Control. Rel. 95, 229–237 (2004).

    Article  CAS  Google Scholar 

  132. Kamada, H. et al. Synthesis of a poly(vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer and its application for renal drug targeting. Nat. Biotechnol. 21, 399–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Jia, Z. et al. Micelle-forming dexamethasone prodrug attenuates nephritis in lupus-prone mice without apparent glucocorticoid side effects. ACS Nano 12, 7663–7681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dolman, M. E. M., Harmsen, S., Storm, G., Hennink, W. E. & Kok, R. J. Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv. Drug. Deliv. Rev. 62, 1344–1357 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Andersson, M., Nilsson, U., Hjalmarsson, C., Haraldsson, B. & Nyström, J. S. Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier. Am. J. Physiol. Ren. Physiol. 292, F1802–F1809 (2007).

    Article  CAS  Google Scholar 

  136. Finch, N. C. et al. Reduced glomerular filtration in diabetes is attributable to loss of density and increased resistance of glomerular endothelial cell fenestrations. J. Am. Soc. Nephrol. 33, 1120–1136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rippe, C., Rippe, A., Larsson, A., Asgeirsson, D. & Rippe, B. Nature of glomerular capillary permeability changes following acute renal ischemia-reperfusion injury in rats. Am. J. Physiol. Ren. Physiol. 291, F1362–F1368 (2006).

    Article  CAS  Google Scholar 

  138. Floege, J. & Feehally, J. in Comprehensive Clinical Nephrology (eds Floege, J., Johnson, R. J. & Feehally, J.) 193–207 (Mosby, 2010).

  139. Vaden, S. L. Glomerular disease. Top. Companion Anim. Med. 26, 128–134 (2011).

    Article  PubMed  Google Scholar 

  140. Avraham, S., Korin, B., Chung, J.-J., Oxburgh, L. & Shaw, A. S. The mesangial cell – the glomerular stromal cell. Nat. Rev. Nephrol. 17, 855–864 (2021).

    Article  PubMed  Google Scholar 

  141. Scindia, Y. M., Deshmukh, U. S. & Bagavant, H. Mesangial pathology in glomerular disease: targets for therapeutic intervention. Adv. Drug. Deliv. Rev. 62, 1337–1343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Guo, L. et al. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat. Commun. 8, 878 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  143. Tuffin, G., Waelti, E., Huwyler, J., Hammer, C. & Marti, H.-P. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J. Am. Soc. Nephrol. 16, 3295–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Zuckerman, J. E., Gale, A., Wu, P., Ma, R. & Davis, M. E. siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid. Ther. 25, 53–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Suh, J. H. & Miner, J. H. The glomerular basement membrane as a barrier to albumin. Nat. Rev. Nephrol. 9, 470–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Cohen, S., Vernier, R. & Michael, A. The effect of charge on the renal distribution of ferritin. Am. J. Pathol. 110, 170–181 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bennett, K. M., Bertram, J. F., Beeman, S. C. & Gretz, N. The emerging role of MRI in quantitative renal glomerular morphology. Am. J. Physiol. Ren. Physiol. 304, F1252–F1257 (2013).

    Article  CAS  Google Scholar 

  148. Bennett, K. M. et al. MRI of the basement membrane using charged nanoparticles as contrast agents. Magn. Reson. Med. 60, 564–574 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Leeuwis, J. W., Nguyen, T. Q., Dendooven, A., Kok, R. J. & Goldschmeding, R. Targeting podocyte-associated diseases. Adv. Drug. Deliv. Rev. s. 62, 1325–1336 (2010).

    Article  CAS  Google Scholar 

  150. Wu, L. et al. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes. Int. J. Mol. Med. 39, 851–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pollinger, K. et al. Kidney podocytes as specific targets for cyclo (RGDfC)‐modified nanoparticles. Small 8, 3368–3375 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Hauser, P. V. et al. Novel siRNA delivery system to target podocytes in vivo. PLoS ONE 5, e9463 (2010).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  153. Chevalier, R. L. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am. J. Physiol. Ren. Physiol. 311, F145–F161 (2016).

    Article  CAS  Google Scholar 

  154. Yu, M., Liu, J., Ning, X. & Zheng, J. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew. Chem. Int. Ed. Engl. 54, 15434–15438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yu, M. et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem. Int. Ed. Engl. 55, 2787–2791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu, J. et al. In vivo X-ray imaging of transport of renal clearable gold nanoparticles in the kidneys. Angew. Chem. Int. Ed. Engl. 56, 13356–13360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen, Q. et al. Nanodrugs alleviate acute kidney injury: manipulate RONS at kidney. Bioact. Mater. 22, 141–167 (2023).

    CAS  PubMed  Google Scholar 

  158. Chen, W. & Li, D. Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front. Chem. 8, 732 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  159. Feng, S. et al. Novel gold-platinum nanoparticles serve as broad-spectrum antioxidants for attenuating ischemia reperfusion injury of the kidney. Kidney Int. 102, 1057–1072 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Hou, J. et al. Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 20, 1447–1454 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  161. Jiang, D. et al. Nanomedicines for renal management: from imaging to treatment. Acc. Chem. Res. 53, 1869–1880 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  164. Yu, H. et al. Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials 219, 119368 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Qin, S., Wu, B., Gong, T., Zhang, Z.-R. & Fu, Y. Targeted delivery via albumin corona nanocomplex to renal tubules to alleviate acute kidney injury. J. Control. Rel. 349, 401–412 (2022).

    Article  CAS  Google Scholar 

  166. Wang, S. et al. Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/caspase-1 pathway. Theranostics 12, 3882–3895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tang, T.-T. et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci. Adv. 6, eaaz0748 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  168. Liu, Z. et al. Neutrophil membrane-enveloped nanoparticles for the amelioration of renal ischemia-reperfusion injury in mice. Acta Biomater. 104, 158–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Deng, X. et al. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater. Sci. 7, 5312–5323 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Vallorz, E. L., Blohm-Mangone, K., Schnellmann, R. G. & Mansour, H. M. Formoterol PLGA-PEG nanoparticles induce mitochondrial biogenesis in renal proximal tubules. AAPS J. 23, 88 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Vallorz, E. L., Janda, J., Mansour, H. M. & Schnellmann, R. G. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int. 102, 1073–1089 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Han, S. J. et al. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int. 98, 76–87 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo, X. et al. Kidney-targeted renalase agonist prevents cisplatin-induced chronic kidney disease by inhibiting regulated necrosis and inflammation. J. Am. Soc. Nephrol. 33, 342–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Williams, R. M. et al. Kidney-targeted redox scavenger therapy prevents cisplatin-induced acute kidney injury. Front. Pharmacol. 12, 790913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kaissling, B. & Le Hir, M. The renal cortical interstitium: morphological and functional aspects. Histochem. Cell Biol. 130, 247–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zeisberg, M. & Kalluri, R. Physiology of the renal interstitium. Clin. J. Am. Soc. Nephrol. 10, 1831–1840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Perazella, M. A. & Markowitz, G. S. Drug-induced acute interstitial nephritis. Nat. Rev. Nephrol. 6, 461–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Tan, L. et al. Mesoscale nanoparticles encapsulated with emodin for targeting antifibrosis in animal models. Open. Chem. 18, 1207–1216 (2020).

    Article  CAS  Google Scholar 

  180. Zhu, X.-Y. et al. Targeted imaging of renal fibrosis using antibody-conjugated gold nanoparticles in renal artery stenosis. Invest. Radiol. 53, 623–628 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li, R. et al. Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity. J. Control. Rel. 320, 32–44 (2020).

    Article  CAS  Google Scholar 

  182. Cheng, H.-T. et al. Delivery of sorafenib by myofibroblast-targeted nanoparticles for the treatment of renal fibrosis. J. Control. Rel. 346, 169–179 (2022).

    Article  CAS  Google Scholar 

  183. Oh, N. & Park, J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51–63 (2014).

    Google Scholar 

  184. Ho, L. W. C., Yin, B., Dai, G. & Choi, C. H. J. Effect of surface modification with hydrocarbyl groups on the exocytosis of nanoparticles. Biochemistry 60, 1019–1030 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Ho, L. W. C. et al. Mammalian cells exocytose alkylated gold nanoparticles via extracellular vesicles. ACS Nano 16, 2032–2045 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  187. Kim, C. et al. Regulating exocytosis of nanoparticles via host–guest chemistry. Org. Biomol. Chem. 13, 2474–2479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Balfourier, A. et al. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl Acad. Sci. USA 117, 103–113 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  189. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  190. Gong, N., Sheppard, N. C., Billingsley, M. M., June, C. H. & Mitchell, M. J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  191. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (NIH) (R01DK124881 (J.Z), R01DK115986 (J.Z), R01DK126140 (M.Y.)), and the Distinguished Chair of Natural Sciences & Mathematics (to J.Z.) from The University of Texas at Dallas.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and J.Z. researched data for the article. Y.H., X.N., S.A., M.Y. and J.Z. contributed substantially to discussion of the content. Y.H., M.Y. and J.Z. wrote the article. Y.H., Q.C., N.R., R.S., M.Y. and J.Z. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Mengxiao Yu or Jie Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Reza Abdi, who co-reviewed with Vivek Kasinath, Kanyi Pu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.’

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ning, X., Ahrari, S. et al. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00819-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00819-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing