Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding systems-level properties: timely stories from the study of clocks

Key Points

  • Systems-biology approaches, such as genetic perturbations combined with kinetic luminescence imaging, synthetic-biology approaches and mathematical modelling, are being used to address the complexity of clock function.

  • The circadian clock community has used mouse genetics to establish non-redundant roles for many clock factors that contribute to circadian oscillators that function within cells and in circadian behaviour.

  • Proportionality and paralogue compensation are key principles that convey robustness to the circadian clock.

  • Researchers have exploited the cyanobacterial system to establish that there are oscillations in phosphorylation status in experiments using three proteins (KaiA, KaiB and KaiC) and ATP. The cyanobacterial clock community has leveraged this model to understand the molecular events that establish periodicity as well as concepts such as molecular synchronization. Quantitative and conceptual models have been important in driving this research.

  • 'Traditional' techniques such as genetics can be used to tackle complex issues in clock biology, such as identifying the components and establishing the mechanism for temperature compensation.

Abstract

After several decades dominated by reductionist approaches in biology, researchers are returning to the study of complex biology with a litany of new and old techniques — this paradigm has been termed systems biology. Here we detail how systems biology is being used to uncover complex systems-level properties of the circadian clock. These properties include robustness, periodicity and temperature compensation. We describe how clock researchers are using systems-biology techniques, such as genetic perturbations, kinetic luminescence imaging, synthetic biology and mathematical modelling, to untangle these complex properties in mammals, fungi and bacteria. The strategies developed in the context of circadian clocks may prove useful for tackling similar problems in other systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perturbation modelling — paralogue compensation and proportionality.
Figure 2: The phosphoform cycle and intermolecular synchronization in cyanobacteria circadian clocks and transcriptional network of mammalian circadian clocks.
Figure 3: The Neurospora crassa circadian clock and two non-exclusive models for temperature compensation.

Similar content being viewed by others

References

  1. Green, C. B., Takahashi, J. S. & Bass, J. The meter of metabolism. Cell 134, 728–742 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kovac, J., Husse, J. & Oster, H. A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock. Mol. Cell 28, 75–80 (2009).

    CAS  Google Scholar 

  3. Froy, O. Metabolism and circadian rhythms — implications for obesity. Endocr. Rev. 31, 1–24 (2010).

    CAS  PubMed  Google Scholar 

  4. Eckel-Mahan, K. L. & Storm, D. R. Circadian rhythms and memory: not so simple as cogs and gears. EMBO Rep. 10, 584–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kyriacou, C. P. & Hastings, M. H. Circadian clocks: genes, sleep, and cognition. Trends Cogn. Sci. 14, 259–267 (2010).

    PubMed  Google Scholar 

  6. Franken, P. & Dijk, D. J. Circadian clock genes and sleep homeostasis. Eur. J. Neurosci. 29, 1820–1829 (2009).

    CAS  PubMed  Google Scholar 

  7. McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625–645 (2010).

    CAS  PubMed  Google Scholar 

  8. Rosato, E., Peixoto, A. A., Costa, R. & Kyriacou, C. P. Linkage disequilibrium, mutational analysis and natural selection in the repetitive region of the clock gene, period, in Drosophila melanogaster. Genet. Res. 69, 89–99 (1997).

    CAS  PubMed  Google Scholar 

  9. Sawyer, L. A. et al. Natural variation in a Drosophila clock gene and temperature compensation. Science 278, 2117–2120 (1997).

    CAS  PubMed  Google Scholar 

  10. Tauber, E. et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895–1898 (2007).

    CAS  PubMed  Google Scholar 

  11. Debruyne, J. P. et al. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465–477 (2006).

    CAS  PubMed  Google Scholar 

  12. Dudley, C. A. et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301, 379–383 (2003).

    CAS  PubMed  Google Scholar 

  13. van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    CAS  PubMed  Google Scholar 

  14. Cermakian, N., Monaco, L., Pando, M. P., Dierich, A. & Sassone-Corsi, P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J. 20, 3967–3974 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, B. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999).

    CAS  PubMed  Google Scholar 

  16. Shearman, L. P., Jin, X., Lee, C., Reppert, S. M. & Weaver, D. R. Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol. Cell. Biol. 20, 6269–6275 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Preitner, N. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    CAS  PubMed  Google Scholar 

  18. Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    CAS  PubMed  Google Scholar 

  19. Andre, E. et al. Disruption of retinoid-related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 17, 3867–3877 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bae, K. et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536 (2001).

    CAS  PubMed  Google Scholar 

  21. DeBruyne, J. P., Weaver, D. R. & Reppert, S. M. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nature Neurosci. 10, 543–545 (2007).

    CAS  PubMed  Google Scholar 

  22. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Harmar, A. J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).

    CAS  PubMed  Google Scholar 

  24. Baggs, J. E et al. Network features of the mammalian circadian clock. PLoS Biol. 7, e52 (2009). This study established the key principles of proportionality and paralogue compensation as common themes in the circadian clock network.

    PubMed  Google Scholar 

  25. Liu, A. C et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129, 605–616 (2007). This paper demonstrated that knockout of clock factors resulted in tissue-specific circadian phenotypes and that the SCN was particularly robust to perturbation because of intercellular coupling.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. DeBruyne, J. P., Weaver, D. R. & Reppert, S. M. Peripheral circadian oscillators require CLOCK. Curr. Biol. 17, R538–R539 (2007).

    CAS  PubMed  Google Scholar 

  27. Kafri, R., Bar-Even, A. & Pilpel, Y. Transcription control reprogramming in genetic backup circuits. Nature Genet. 37, 295–299 (2005).

    CAS  PubMed  Google Scholar 

  28. Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl Acad. Sci. USA 103, 11653–11658 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakahata, Y., Akashi, M., Trcka, D., Yasuda, A. & Takumi, T. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks. BMC Mol. Biol. 7, 5 (2006).

    PubMed  PubMed Central  Google Scholar 

  30. Hirota, T. et al. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proc. Natl Acad. Sci. USA 105, 20746–20751 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson, C. H., Egli, M. & Stewart, P. L. Structural insights into a circadian oscillator. Science 322, 697–701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong, G. & Golden, S. S. How a cyanobacterium tells time. Curr. Opin. Microbiol. 11, 541–546 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Markson, J. S. & O'Shea, E. K. The molecular clockwork of a protein-based circadian oscillator. FEBS Lett. 583, 3938–3947 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005). This work demonstrated that it was possible to reconstitute circadian clock function in vitro with three purified proteins and ATP.

    CAS  PubMed  Google Scholar 

  35. O'Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011). This paper shows that circadian oscillations are present in red blood cells, in which transcriptional rhythms do not exist.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomita, J., Nakajima, M., Kondo, T. & Iwasaki, H. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005).

    CAS  PubMed  Google Scholar 

  37. Xu, Y., Mori, T. & Johnson, C. H. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J. 22, 2117–2126 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishiwaki, T., Iwasaki, H., Ishiura, M. & Kondo, T. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc. Natl Acad. Sci. USA 97, 495–499 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kitayama, Y., Iwasaki, H., Nishiwaki, T. & Kondo, T. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J. 22, 2127–2134 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kageyama, H. et al. Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Mol. Cell 23, 161–171 (2006).

    CAS  PubMed  Google Scholar 

  41. Nishiwaki, T. et al. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc. Natl Acad. Sci. USA 101, 13927–13932 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, Y. et al. Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proc. Natl Acad. Sci. USA 101, 13933–13938 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O'Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007). This study showed that ordered phosphorylation events govern oscillations in cyanobacteria clock function in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishiwaki, T. et al. A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 26, 4029–4037 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito, H. et al. Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nature Struct. Mol. Biol. 14, 1084–1088 (2007). Using the purified proteins model of the cyanobacterial clock, this study showed that mixing cultures of different phases results in adoption of one of the two phases. Further, it showed that monomer exchange between KaiC hexamers in the early dephosphorylation phase is linked with synchronization.

    CAS  Google Scholar 

  46. Nagai, T., Terada, T. P. & Sasai, M. Synchronization of circadian oscillation of phosphorylation level of KaiC in vitro. Biophys. J. 98, 2469–2477 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, Q., Pando, B. F., Dong, G., Golden S.S. & van Oudenaarden, A. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 327, 1522–1526 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000). In this study, a synthetic network, termed a repressilator, was developed that can produce synthetic oscillations in transcription.

    CAS  PubMed  Google Scholar 

  49. Müller, S. et al. A generalized model of the repressilator. J. Math. Biol. 53, 905–937 (2006).

    PubMed  Google Scholar 

  50. Zhu, R., Ribeiro, A. S., Salahub, D. & Kauffman, S. A. Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models. J. Theor. Biol. 246, 725–745 (2007).

    CAS  PubMed  Google Scholar 

  51. Mileyko, Y., Joh, R. I. & Weitz, J. S. Small-scale copy number variation and large-scale changes in gene expression. Proc. Natl Acad. Sci. USA 105, 16659–16664 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ukai-Tadenuma, M. et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144, 268–281 (2011).

    CAS  PubMed  Google Scholar 

  53. Izumo, M., Johnson, C. H. & Yamazaki, S. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. Proc. Natl Acad. Sci. USA 100, 16089–16094 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lenhardt, R. & Sessler, D. I. Estimation of mean body temperature from mean skin and core temperature. Anesthesiology 105, 1117–1121 (2006).

    PubMed  Google Scholar 

  55. Buhr, E. D., Yoo, S. H. & Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dunlap, J. C. et al. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb. Symp. Quant. Biol. 72, 57–68 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. de Paula, R. M., Vitalini, M. W., Gomer, R. H. & Bell-Pedersen, D. Complexity of the Neurospora crassa circadian clock system: multiple loops and oscillators. Cold Spring Harb. Symp. Quant. Biol. 72, 345–351 (2007).

    CAS  PubMed  Google Scholar 

  58. Hastings, J. W. & Sweeney, B. M. On the mechanism of temperature dependence in a biological clock. Proc. Natl Acad. Sci. USA 43, 804–811 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, Y., Garceau, N. Y., Loros, J. J. & Dunlap, J. C. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell 89, 477–486 (1997).

    CAS  PubMed  Google Scholar 

  60. Liu, Y., Merrow, M., Loros, J. J. & Dunlap, J. C. How temperature changes reset a circadian oscillator. Science 281, 825–829 (1998).

    CAS  PubMed  Google Scholar 

  61. Diernfellner, A. C., Schafmeier, T., Merrow, M. W. & Brunner, M. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev. 19, 1968–1973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Diernfellner, A. et al. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett. 581, 5759–5764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mehra, A. et al. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 137, 749–760 (2009). This study established the role of CK-2 in the temperature-compensation mechanism in N. crassa.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gardner, G. F. & Feldman, J. F. Temperature compensation of circadian period length in clock mutants of Neurospora crassa. Plant Physiol. 68, 1244–1248 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Terauchi, K. et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc. Natl Acad. Sci. USA 104, 16377–16381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Isojima, Y. et al. CKIɛ/δ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl Acad. Sci. USA 106, 15744–15749 (2009). This paper shows that temperature-insensitive enzyme reactions exist in eukaryotic circadian clocks.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  68. Winzeler, E. A. et al. Functional characterization of the, S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  69. Tucker, C. L. & Fields, S. Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genomics 5, 216–224 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gong, Y. & Zhang, Z. Alternative pathway approach for automating analysis and validation of cell perturbation networks and design of perturbation experiments. Ann. N.Y. Acad. Sci. 1115, 267–285 (2007).

    CAS  PubMed  Google Scholar 

  71. Kundaje, A. et al. A predictive model of the oxygen and heme regulatory network in yeast. PLoS Comput. Biol. 4, e1000224 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Peleg, T., Yosef, N., Ruppin, E. & Sharan, R. Network-free inference of knockout effects in yeast. PLoS Comput. Biol. 6, e1000635 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Forger, D. B. Signal processing in cellular clocks. Proc. Natl Acad. Sci. USA 108, 4281–4285 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B. & Botstein, D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl Acad. Sci. USA 100, 8348–8353 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Savage, R. S., Ghahramani, Z., Griffin J. E., de la Cruz, B. J. & Wild, D. L. Discovering transcriptional modules by Bayesian data integration. Bioinformatics 26, i158–i167 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Azuaje, F. Advancing post-genome data and system integration through machine learning. Comp. Funct. Genomics 3, 28–31 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bidaut, G. & Stoeckert, C. J. Jr. Characterization of unknown adult stem cell samples by large scale data integration and artificial neural networks. Pac. Symp. Biocomput. 2009, 356–367 (2009).

    Google Scholar 

  78. Winfree, A. T. The Geometry of Biological Time 2nd edn (Springer, New York, USA, 2001).

    Google Scholar 

  79. Ruoff, P. Introducing temperature-compensation in any reaction kinetic oscillator model. J. Interdiscipl. Cycle Res. 23, 92–99 (1992).

    Google Scholar 

  80. Forger, D. B., Jewett, M. E. & Kronauer, R. E. A simpler model of the human circadian pacemaker. J. Biol. Rhythms 14, 532–537 (1999).

    CAS  PubMed  Google Scholar 

  81. Goodwin, B.C. Temperature Organization in Cells. A Dynamic Theory of Cellular Control Processes (Academic, New York, USA, 1963).

    Google Scholar 

  82. Kuramoto, Y. Chemical Oscillators, Waves and Turbulence (Springer, Berlin, Germany, 1984).

    Google Scholar 

  83. Goldbeter, A. A model for circadian oscillations in the Drosophila period protein (PER). Proc. Biol. Sci. 261, 319–324 (1995).

    CAS  PubMed  Google Scholar 

  84. Forger, D. B. & Peskin, C. S. A detailed predictive model of the mammalian circadian clock. Proc. Natl Acad. Sci. USA 100, 14806–14811 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Hogenesch and Ueda laboratories for their comments on this Review. J.B.H. is supported by the National Heart, Lung and Blood Institute (NHBLI, 1R01HL097800), the National Institute for Neurological Disorders and Stroke (NINDS, 5R01NS054794) and the Pennsylvania Commonwealth Health Research Formula Funds. This work was partly supported by the RIKEN research grant and the Cell Innovation Program from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John B. Hogenesch or Hiroki R. Ueda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John B. Hogenesch's laboratory homepage

Hiroki R. Ueda's laboratory homepage

Circadian Modelling

Mouse Genome Informatics

Glossary

Temperature compensation

In biological clocks, this is the property by which an increase or decrease in temperature fails to change the period length of the circadian rhythm.

Robustness

The resistance to perturbation by, for example, genetic or environmental factors.

Poikilotherms

Organisms that do not regulate their body temperatures.

Homeotherms

Organisms that regulate their body temperatures.

Bayesian integration

The use of the Bayesian inference — a statistical inference where experimental data is used to infer new or update prior hypotheses — to integrate large-scale, genomic data sets.

Diapause

The suspension of insect development after subjection to adverse environmental conditions.

Rhythmicity

In biological clocks, this is the property by which a molecular, cellular or physiological response recurs with regularity.

RNA interference

(RNAi). A biochemical system in cells that governs how dsRNA can interact with mRNAs to activate or inhibit their message levels or translation.

Autonomous oscillator

In biological clocks, this is a system in which cellular oscillations — rhythmic fluctuations with a definable period length — in gene transcription, reporter gene activity or physiology persist in isolated cells.

Repressilator

This is a synthetic network that generates stable oscillations in GFP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogenesch, J., Ueda, H. Understanding systems-level properties: timely stories from the study of clocks. Nat Rev Genet 12, 407–416 (2011). https://doi.org/10.1038/nrg2972

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing