Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

VEGF-targeted cancer therapeutics—paradoxical effects in endocrine organs

Key Points

  • Antiangiogenic drugs that target vascular endothelial growth factor A (VEGF-A; VEGF) signalling are widely used, either alone or in combination with chemotherapy, to treat various types of cancer

  • Vasculatures in endocrine organs are dependent on the VEGF–VEGF receptor signal transduction pathway for their survival, architecture and function

  • Systemic delivery of anti-VEGF drugs has the potential to adversely affect vasculatures in healthy tissues and organs, including the density and structure of capillary networks in endocrine organs

  • Tumour-derived VEGF can act as a hormone that modulates the structure and function of microvessels in endocrine organs

  • Understanding the mechanisms by which anti-VEGF drugs affect endocrine vasculatures is crucial to minimize the adverse effects associated with their use

Abstract

Systemic administration of antiangiogenic drugs that target components of the vascular endothelial growth factor A (VEGF-A; VEGF) signal transduction pathway has become a viable therapeutic option for patients with various types of cancer. Nevertheless, these drugs can drive alterations in healthy vasculatures, which in turn are associated with adverse effects in healthy tissues. VEGF is crucial for vascular homeostasis and the maintenance of vascular integrity and architecture in endocrine organs. Given these critical physiological functions, systemic delivery of drugs that target VEGF signalling can block VEGF-mediated vascular functions in endocrine organs, such as the thyroid gland, and lead to endocrine dysfunction, including hypothyroidism, adrenal insufficiency and altered insulin sensitivity. This Review discusses emerging evidence from preclinical and clinical studies that contributes to understanding the mechanisms that underlie the vascular changes and subsequent modulations of endocrine function that are induced by targeted inhibition of VEGF signalling. Understanding these mechanisms is crucial for the design of antiangiogenic drugs with minimal associated adverse effects that will enable effective treatment of patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paracrine interactions between endocrine cells and vascular endothelial cells.
Figure 2: VEGF mediates physiological and pathological functions during embryogenesis and in adult tissues.
Figure 3: VEGF mediates tumour-derived endocrine functions.
Figure 4: Effects of targeting VEGF signalling in the thyroid gland.
Figure 5: Development of antiangiogenic drugs that target the VEGF–VEGFR-2 signalling axis.

Similar content being viewed by others

References

  1. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Sato, Y. et al. Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Ann. NY Acad. Sci. 902, 201–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2, re1 (2009).

    PubMed  Google Scholar 

  4. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Fan, L. & Iseki, S. Immunohistochemical localization of vascular endothelial growth factor in the endocrine glands of the rat. Arch. Histol. Cytol. 61, 17–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Shweiki, D., Itin, A., Neufeld, G., Gitay-Goren, H. & Keshet, E. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J. Clin. Invest. 91, 2235–2243 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schlaeppi, J. M. & Wood, J. M. Targeting vascular endothelial growth factor (VEGF) for anti-tumor therapy, by anti-VEGF neutralizing monoclonal antibodies or by VEGF receptor tyrosine-kinase inhibitors. Cancer Metastasis Rev. 18, 473–481 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J.Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868–8873 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, R. et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc. Natl Acad. Sci. USA 109, 15894–15899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yancopoulos, G. D., Klagsbrun, M. & Folkman, J. Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93, 661–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Cao, Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat. Rev. Cancer 5, 735–743 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Cao, Y. et al. Forty-year journey of angiogenesis translational research. Sci. Transl. Med. 3, 114rv113 (2011).

    Google Scholar 

  17. Kerbel, R. S. Tumor angiogenesis. N. Engl. J.Med. 358, 2039–2049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, Y. & Langer, R. Optimizing the delivery of cancer drugs that block angiogenesis. Sci. Transl. Med. 2, 15ps3 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. [No authors listed] Bevacizumab: more fatal adverse effects. Prescrire Int. 21, 266–267 (2012).

  20. Hamilton, E. P. & Blackwell, K. L. Safety of bevacizumab in patients with metastatic breast cancer. Oncology 80, 314–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Ciombor, K. K., Berlin, J. & Chan, E. Aflibercept. Clin. Cancer Res. 19, 1920–1925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clarke, J. M. & Hurwitz, H. I. Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin. Biol. Ther. 13, 1187–1196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tannock, I. F. et al. Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial. Lancet Oncol. 14, 760–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Krupitskaya, Y. & Wakelee, H. A. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr. Opin. Investig. Drugs 10, 597–605 (2009).

    CAS  PubMed  Google Scholar 

  25. Cao, Y. Off-tumor target—beneficial site for antiangiogenic cancer therapy? Nat. Rev. Clin. Oncol. 7, 604–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Palade, G. E., Simionescu, M. & Simionescu, N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol. Scand. Suppl. 463, 11–32 (1979).

    CAS  PubMed  Google Scholar 

  27. Ballian, N. & Brunicardi, F. C. Islet vasculature as a regulator of endocrine pancreas function. World J. Surg. 31, 705–714 (2007).

    Article  PubMed  Google Scholar 

  28. Farquhar, M. G., Wissig, S. L. & Palade, G. E. Glomerular permeability I. Ferritin transfer across the normal glomerular capillary wall. J. Exp. Med. 113, 47–66 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warner, A. et al. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1. Proc. Natl Acad. Sci. USA 110, 16241–16246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kolka, C. M. & Bergman, R. N. The barrier within: endothelial transport of hormones. Physiology (Bethesda) 27, 237–247 (2012).

    CAS  Google Scholar 

  31. Guney, M. A. et al. Connective tissue growth factor acts within both endothelial cells and β cells to promote proliferation of developing β cells. Proc. Natl Acad. Sci. USA 108, 15242–15247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elfvin, L. G. The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J. Ultrastruct. Res. 12, 687–704 (1965).

    Article  CAS  PubMed  Google Scholar 

  33. Møller, M., van Deurs, B. & Westergaard, E. Vascular permeability to proteins and peptides in the mouse pineal gland. Cell Tissue Res. 195, 1–15 (1978).

    Article  PubMed  Google Scholar 

  34. Lamperti, A. & Mastovich, J. Morphological changes in the hypothalamic arcuate nucleus and median eminence in the golden hamster during the neonatal period. Am. J. Anat. 166, 173–185 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Simionescu, N., Lupu, F. & Simionescu, M. Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium. J. Cell Biol. 97, 1592–1600 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Hart, T. K. & Pino, R. M. Pseudoislet vascularization. Induction of diaphragm-fenestrated endothelia from the hepatic sinusoids. Lab. Invest. 54, 304–313 (1986).

    CAS  PubMed  Google Scholar 

  37. Esser, S. et al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140, 947–959 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dvorak, A. M. et al. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 59, 100–115 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Eriksson, A. et al. Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 107, 1532–1538 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Cao, R. et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664–670 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Y. et al. Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc. Natl Acad. Sci. USA 110, 12018–12023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jubb, A. M. et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1α, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504–512 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, S. L. et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc. Natl Acad. Sci. USA 106, 19485–19490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hegde, P. S. et al. Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin. Cancer Res. 19, 929–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Wong, A. K. et al. Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc. Natl Acad. Sci. USA 98, 7481–7486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue, Y. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc. Natl Acad. Sci. USA 105, 18513–18518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, D. et al. Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity. Proc. Natl Acad. Sci. USA 108, 4117–4122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Houck, K. A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Tischer, E. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, X. & Couchman, J. R. Perlecan and tumor angiogenesis. J. Histochem. Cytochem. 51, 1393–1410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, J. E., Keller, G. A. & Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morbidelli, L. et al. Distinct capillary density and progression promoted by vascular endothelial growth factor-A homodimers and heterodimers. Angiogenesis 1, 117–130 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poltorak, Z., Cohen, T. & Neufeld, G. The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases. Herz 25, 126–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Vempati, P., Mac Gabhann, F. & Popel, A. S. Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS ONE 5, e11860 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ding, G. X. et al. Paraneoplastic symptoms: cachexia, polycythemia, and hypercalcemia are, respectively, related to vascular endothelial growth factor (VEGF) expression in renal clear cell carcinoma. Urol. Oncol. 31, 1820–1825 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Richardson, G. E. & Johnson, B. E. Paraneoplastic syndromes in lung cancer. Curr. Opin. Oncol. 4, 323–333 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Pelosof, L. C. & Gerber, D. E. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin. Proc. 85, 838–854 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aoyagi, T., Mori, I., Ueyama, Y. & Tamaoki, N. Sinusoidal dilatation of the liver as a paraneoplastic manifestation of renal cell carcinoma. Hum. Pathol. 20, 1193–1197 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Jacobi, G. H., Abdelhamid, S. & Philipp, T. [Stauffer syndrome, paraneoplastic hepatic dysfunction syndrome associated with renal cell carcinoma (author's transl.)]. Urologe A. 15, 78–82 (1976).

    CAS  PubMed  Google Scholar 

  61. Seizinger, B. R. et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332, 268–269 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Koch, C. A. et al. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma. BMC Cancer 6, 131 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ebos, J. M., Lee, C. R., Christensen, J. G., Mutsaers, A. J. & Kerbel, R. S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104, 17069–17074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, J., Connor, K. M., Aderman, C. M. & Smith, L. E. Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xue, Y. et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat. Med. 18, 100–110 (2011).

    Article  PubMed  CAS  Google Scholar 

  68. Bocci, G. et al. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res. 64, 6616–6625 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. LeCouter, J., Zlot, C., Tejada, M., Peale, F. & Ferrara, N. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc. Natl Acad. Sci. USA 101, 16813–16818 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Motzer, R. J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Escudier, B. et al. Bevacizumab plus interferon α-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  76. McDermott, D. F. Immunotherapy of metastatic renal cell carcinoma. Cancer 115, 2298–2305 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. van der Wall, E., Beijnen, J. H. & Rodenhuis, S. High-dose chemotherapy regimens for solid tumors. Cancer Treat. Rev. 21, 105–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. D'Agostino, R. B., Sr. Changing end points in breast-cancer drug approval—the Avastin story. N. Engl. J. Med. 365, e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365, 2484–2496 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 365, 2473–2483 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Miles, D. W. et al. Biomarker results from the AVADO phase 3 trial of first-line bevacizumab plus docetaxel for HER2-negative metastatic breast cancer. Br. J. Cancer 108, 1052–1060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bear, H. D. et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 366, 310–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van der Veldt, A. A., Lammertsma, A. A. & Smit, E. F. Reduction in thyroid perfusion after bevacizumab treatment. Thyroid 23, 1329–1330 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Ahmadieh, H. & Salti, I. Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment. Biomed Res. Int. 2013, 725410 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Funakoshi, T. & Shimada, Y. J. Risk of hypothyroidism in patients with cancer treated with sunitinib: a systematic review and meta-analysis. Acta Oncol. 52, 691–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. van Cruijsen, H., van der Veldt, A. & Hoekman, K. Tyrosine kinase inhibitors of VEGF receptors: clinical issues and remaining questions. Front. Biosci. (Landmark Ed.) 14, 2248–2268 (2009).

    Article  CAS  Google Scholar 

  88. Reismüller, B. et al. Feasibility and tolerability of bevacizumab in children with primary CNS tumors. Pediatr. Blood Cancer 54, 681–686 (2010).

    Article  PubMed  Google Scholar 

  89. Eisen, T. et al. Targeted therapies for renal cell carcinoma: review of adverse event management strategies. J. Natl Cancer Inst. 104, 93–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Desai, J. et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann. Intern. Med. 145, 660–664 (2006).

    Article  PubMed  Google Scholar 

  91. Wolter, P. et al. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br. J. Cancer 99, 448–454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mannavola, D. et al. A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J. Clin. Endocrinol. Metab. 92, 3531–3534 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Salem, A. K., Fenton, M. S., Marion, K. M. & Hershman, J. M. Effect of sunitinib on growth and function of FRTL-5 thyroid cells. Thyroid 18, 631–635 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Wong, E. et al. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid 17, 351–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Braun, D. et al. Tyrosine kinase inhibitors noncompetitively inhibit MCT8-mediated iodothyronine transport. J. Clin. Endocrinol. Metab. 97, E100–E105 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Kappers, M. H. et al. Sunitinib-induced hypothyroidism is due to induction of type 3 deiodinase activity and thyroidal capillary regression. J. Clin. Endocrinol. Metab. 96, 3087–3094 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Maynard, M. A. et al. Thyroid hormone inactivation in gastrointestinal stromal tumors. N. Engl. J. Med. 370, 1327–1334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hershman, J. M. & Liwanpo, L. How does sunitinib cause hypothyroidism? Thyroid 20, 243–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Wei, K. et al. A liver Hif-2α-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat. Med. 19, 1331–1337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taniguchi, C. M. et al. Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat. Med. 19, 1325–1330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rock, E. P. et al. Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist 12, 107–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Yoshino, T. et al. A case of acute adrenal insufficiency unmasked during sunitinib treatment for metastatic renal cell carcinoma. Jpn J. Clin. Oncol. 42, 764–766 (2012).

    Article  PubMed  Google Scholar 

  104. Tisdale, M. J. Cachexia in cancer patients. Nat. Rev. Cancer 2, 862–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Folkman, J. & Kalluri, R. Cancer without disease. Nature 427, 787 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl Acad. Sci. USA 95, 14389–14394 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dvorak, H. F., Senger, D. R., Dvorak, A. M., Harvey, V. S. & McDonagh, J. Regulation of extravascular coagulation by microvascular permeability. Science 227, 1059–1061 (1985).

    Article  CAS  PubMed  Google Scholar 

  108. Cao, Y. Tumor angiogenesis and therapy. Biomed. Pharmacother. 59 (Suppl 2), S340–S343 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, Y. et al. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151, 1332–1344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.C. thanks Dr S. Lim, at the Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, for the design of Figure 3. Y.C.'s laboratory is supported by research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Karolinska Institute Distinguished Professor Award, the Torsten Söderbergs Foundation, the Novo Nordisk Foundation, and the European Research Council advanced grant ANGIOFAT (Project no. 250,021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihai Cao.

Ethics declarations

Competing interests

Y.C. receives grant support from the Novo Norodisk Foundation and is the founder and a share holder of Clanotech, a Karolinska Development-based biotechnology company that focuses on developing drugs for the treatment of ocular diseases.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y. VEGF-targeted cancer therapeutics—paradoxical effects in endocrine organs. Nat Rev Endocrinol 10, 530–539 (2014). https://doi.org/10.1038/nrendo.2014.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.114

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer