Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting angiogenesis in oncology, ophthalmology and beyond

Abstract

Angiogenesis is an essential process in normal development and in adult physiology, but can be disrupted in numerous diseases. The concept of targeting angiogenesis for treating diseases was proposed more than 50 years ago, and the first two drugs targeting vascular endothelial growth factor (VEGF), bevacizumab and pegaptanib, were approved in 2004 for the treatment of cancer and neovascular ophthalmic diseases, respectively. Since then, nearly 20 years of clinical experience with anti-angiogenic drugs (AADs) have demonstrated the importance of this therapeutic modality for these disorders. However, there is a need to improve clinical outcomes by enhancing therapeutic efficacy, overcoming drug resistance, defining surrogate markers, combining with other drugs and developing the next generation of therapeutics. In this Review, we examine emerging new targets, the development of new drugs and challenging issues such as the mode of action of AADs and elucidating mechanisms underlying clinical benefits; we also discuss possible future directions of the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key milestones in angiogenesis research and drug discovery.
Fig. 2: Clinically approved anti-VEGF drugs for treating cancer and ophthalmic diseases.
Fig. 3: Angiogenic signalling molecules and their vascular functions.
Fig. 4: Anti-angiogenic drugs target different VEGF signalling events.
Fig. 5: Immunosuppressive functions of the tumour vasculature and VEGF.
Fig. 6: Targeting angiogenesis for treatment of ophthalmic diseases.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Cao, Y. Tumor angiogenesis and molecular targets for therapy. Front. Biosci. 14, 3962–3973 (2009).

    Article  CAS  Google Scholar 

  5. Folkman, J. Tumor angiogenesis and tissue factor. Nat. Med. 2, 167–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Xiong, J. W. Molecular and developmental biology of the hemangioblast. Dev. Dyn. 237, 1218–1231 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cao, Y. VEGF-targeted cancer therapeutics — paradoxical effects in endocrine organs. Nat. Rev. Endocrinol. 10, 530–539 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Augustin, H. G. & Koh, G. Y. Antiangiogenesis: vessel regression, vessel normalization, or both. Cancer Res. 82, 15–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Patel, S. A. et al. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin. Cancer Res. 29, 30–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Presta, L. G. et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  16. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Garcia, J. et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 86, 102017 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Cao, Y. et al. Forty-year journey of angiogenesis translational research. Sci. Transl Med. 3, 114rv113 (2011).

    Article  Google Scholar 

  20. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jayson, G. C., Hicklin, D. J. & Ellis, L. M. Antiangiogenic therapy — evolving view based on clinical trial results. Nat. Rev. Clin. Oncol. 9, 297–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Thorpe, P. E. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res. 10, 415–427 (2004).

    Article  PubMed  Google Scholar 

  23. Lammer, J. et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc. Intervent. Radiol. 33, 41–52 (2010).

    Article  PubMed  Google Scholar 

  24. Ferrara, N. & Adamis, A. P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15, 385–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Osaadon, P., Fagan, X. J., Lifshitz, T. & Levy, J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye 28, 510–520 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Amoaku, W. M. et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye 29, 721–731 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107–1111 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2, re1 (2009).

    Article  PubMed  Google Scholar 

  29. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cao, R. et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664–670 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Pallotta, M. T. & Nickel, W. FGF2 and IL-1β — explorers of unconventional secretory pathways at a glance. J. Cell Sci. 133, jcs250449 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, D. L., Ortega, S., Bashayan, O., Basch, R. & Basilico, C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol. Cell Biol. 20, 2260–2268 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ozaki, H. et al. Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. Am. J. Pathol. 153, 757–765 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tobe, T. et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am. J. Pathol. 153, 1641–1646 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Brindle, N. P., Saharinen, P. & Alitalo, K. Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 98, 1014–1023 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Lobov, I. B., Brooks, P. C. & Lang, R. A. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc. Natl Acad. Sci. USA 99, 11205–11210 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Hakanpaa, L. et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat. Commun. 6, 5962 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Thurston, G. & Kitajewski, J. VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br. J. Cancer 99, 1204–1209 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bolos, V., Grego-Bessa, J. & de la Pompa, J. L. Notch signaling in development and cancer. Endocr. Rev. 28, 339–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Fuller, T., Korff, T., Kilian, A., Dandekar, G. & Augustin, H. G. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J. Cell Sci. 116, 2461–2470 (2003).

    Article  PubMed  Google Scholar 

  49. Yoshiji, H. et al. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut 54, 1768–1775 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Nissen, L. J. et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest. 117, 2766–2777 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cao, Y. & Langer, R. Optimizing the delivery of cancer drugs that block angiogenesis. Sci. Transl Med. 2, 15ps13 (2010).

    Article  Google Scholar 

  54. Jubb, A. M. et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1α, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504–512 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Semenza, G. L. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know. Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Cao, Y. Off-tumor target — beneficial site for antiangiogenic cancer therapy? Nat. Rev. Clin. Oncol. 7, 604–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Xue, Y. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc. Natl Acad. Sci. USA 105, 18513–18518 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yang, Y. et al. Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc. Natl Acad. Sci. USA 110, 12018–12023 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451, 1008–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Campochiaro, P. A. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 49, 67–81 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384, 665–673 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Fuchs, C. S. et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383, 31–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Sivaprasad, S. et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet 389, 2193–2203 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Diabetic Retinopathy Clinical Research Network et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 372, 1193–1203 (2015).

    Article  Google Scholar 

  68. Martin, D. F. & Maguire, M. G. Treatment choice for diabetic macular edema. N. Engl. J. Med. 372, 1260–1261 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Cao, Y. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc. Natl Acad. Sci. USA 95, 14389–14394 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kumar, R. et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br. J. Cancer 101, 1717–1723 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Chung, A. S. et al. Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J. Pathol. 227, 404–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Singh, M. et al. Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J. Pathol. 227, 417–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Rigamonti, N. et al. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 8, 696–706 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol. 29, 83–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Blagoev, K. B. et al. Sunitinib does not accelerate tumor growth in patients with metastatic renal cell carcinoma. Cell Rep. 3, 277–281 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Zeng, Y. & Fu, B. M. Resistance mechanisms of anti-angiogenic therapy and exosomes-mediated revascularization in cancer. Front. Cell Dev. Biol. 8, 610661 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  85. Giuliano, S. & Pages, G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie 95, 1110–1119 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Torok, S. et al. Limited tumor tissue drug penetration contributes to primary resistance against angiogenesis inhibitors. Theranostics 7, 400–412 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Haibe, Y. et al. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol. 10, 221 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  88. Finke, J. et al. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharmacol. 11, 856–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Phan, V. T. et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc. Natl Acad. Sci. USA 110, 6079–6084 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Shojaei, F., Singh, M., Thompson, J. D. & Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl Acad. Sci. USA 105, 2640–2645 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Itatani, Y. et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc. Natl Acad. Sci. USA 117, 21598–21608 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Iwamoto, H. et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 28, 104–117.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Cao, Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Invest. 129, 3006–3017 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Zhang, Y. et al. Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy. Proc. Natl Acad. Sci. USA 114, E5226–E5235 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Yang, Y. et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat. Commun. 7, 12680 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhang, Y. et al. Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy. Proc. Natl Acad. Sci. USA 113, 4158–4163 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Oza, A. M. et al. A long-term extension study of bevacizumab in patients with solid tumors. Oncologist 26, e2254–e2264 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Hegde, P. S. et al. Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin. Cancer Res. 19, 929–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Hedlund, E. M., Hosaka, K., Zhong, Z., Cao, R. & Cao, Y. Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature. Proc. Natl Acad. Sci. USA 106, 17505–17510 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Eriksson, A. et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1, 99–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Hedlund, E. M. et al. Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs. Proc. Natl Acad. Sci. USA 110, 654–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Hornig, C. et al. Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Lab. Invest. 80, 443–454 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Tsatsaris, V. et al. Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences. J. Clin. Endocrinol. Metab. 88, 5555–5563 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Zirlik, K. & Duyster, J. Anti-angiogenics: current situation and future perspectives. Oncol. Res. Treat. 41, 166–171 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Aoyagi, Y., Iinuma, H., Horiuchi, A., Shimada, R. & Watanabe, T. Association of plasma VEGF-A, soluble VEGFR-1 and VEGFR-2 levels and clinical response and survival in advanced colorectal cancer patients receiving bevacizumab with modified FOLFOX6. Oncol. Lett. 1, 253–259 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Bais, C. et al. Tumor microvessel density as a potential predictive marker for bevacizumab benefit: GOG-0218 biomarker analyses. J. Natl Cancer Inst. 109, djx066 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  110. Thiel, K. W. et al. TP53 sequencing and p53 immunohistochemistry predict outcomes when bevacizumab is added to frontline chemotherapy in endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. J. Clin. Oncol. 40, 3289–3300 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Nixon, A. B. et al. Predictive biomarkers of overall survival in patients with metastatic renal cell carcinoma treated with IFNα ± bevacizumab: results from CALGB 90206 (Alliance). Clin. Cancer Res. 28, 2771–2778 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Alvarez Secord, A. et al. Predictive blood-based biomarkers in patients with epithelial ovarian cancer treated with carboplatin and paclitaxel with or without bevacizumab: results from GOG-0218. Clin. Cancer Res. 26, 1288–1296 (2020).

    Article  PubMed  Google Scholar 

  113. Nixon, A. B. et al. Plasma protein biomarkers in advanced or metastatic colorectal cancer patients receiving chemotherapy with bevacizumab or cetuximab: results from CALGB 80405 (Alliance). Clin. Cancer Res. 28, 2779–2788 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Armstrong, A. J. et al. Angiokines associated with targeted therapy outcomes in patients with non-clear cell renal cell carcinoma. Clin. Cancer Res. 27, 3317–3328 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Ahmadieh, H. & Salti, I. Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment. Biomed. Res. Int. 2013, 725410 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  117. Hamnvik, O. P., Larsen, P. R. & Marqusee, E. Thyroid dysfunction from antineoplastic agents. J. Natl Cancer Inst. 103, 1572–1587 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Wong, A. K. et al. Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc. Natl Acad. Sci. USA 98, 7481–7486 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Aoyagi, T., Mori, I., Ueyama, Y. & Tamaoki, N. Sinusoidal dilatation of the liver as a paraneoplastic manifestation of renal cell carcinoma. Hum. Pathol. 20, 1193–1197 (1989).

    Article  CAS  PubMed  Google Scholar 

  120. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Twomey, J. D. & Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23, 39 (2021).

    Article  PubMed  Google Scholar 

  122. Costa, B. & Vale, N. Dostarlimab: a review. Biomolecules 12, 1031 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Lee, W. S., Yang, H., Chon, H. J. & Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 52, 1475–1485 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Duan, Q., Zhang, H., Zheng, J. & Zhang, L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer 6, 605–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Coffelt, S. B. et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol. 186, 4183–4190 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Im, J. H. et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat. Commun. 11, 4064 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Yasuda, S. et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 172, 500–506 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Meder, L. et al. Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res. 78, 4270–4281 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Akbari, P., Huijbers, E. J. M., Themeli, M., Griffioen, A. W. & van Beijnum, J. R. The tumor vasculature an attractive CAR T cell target in solid tumors. Angiogenesis 22, 473–475 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  131. Lanitis, E. et al. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J. Immunother. Cancer 9, e002151 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  132. Hack, S. P., Zhu, A. X. & Wang, Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities. Front. Immunol. 11, 598877 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Albiges, L. et al. Updated European Association of Urology Guidelines on renal cell carcinoma: immune checkpoint inhibition is the new backbone in first-line treatment of metastatic clear-cell renal cell carcinoma. Eur. Urol. 76, 151–156 (2019).

    Article  PubMed  Google Scholar 

  134. Damato, A. et al. FOLFOXIRI/bevacizumab plus nivolumab as first-line treatment in metastatic colorectal cancer RAS/BRAF mutated: safety run-in of phase II NIVACOR Trial. Front. Oncol. 11, 766500 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  135. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Makker, V. et al. 354 Lenvatinib and pembrolizumab in advanced endometrial carcinoma (EC): long-term efficacy and safety update from a phase 1b/2 study. J. Immunother. Cancer 9, A381 (2021).

    Article  Google Scholar 

  137. Itatani, Y., Kawada, K., Yamamoto, T. & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int. J. Mol. Sci. 19, 1232 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  138. Khan, K. A., Wu, F. T., Cruz-Munoz, W. & Kerbel, R. S. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol. Med. 13, e08253 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Bendell, J. C. et al. The McCAVE trial: vanucizumab plus mFOLFOX-6 versus bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist 25, e451–e459 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Shirai, Y. et al. An overview of the recent development of anticancer agents targeting the HIF-1 transcription factor. Cancers 13, 2813 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Berchner-Pfannschmidt, U., Frede, S., Wotzlaw, C. & Fandrey, J. Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur. Respir. J. 32, 210–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R. & Tee, A. R. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34, 2239–2250 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Motzer, R. J. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 16, 1473–1482 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat. Med. 27, 802–805 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Deeks, E. D. Belzutifan: first approval. Drugs 81, 1921–1927 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Koch, U. & Radtke, F. Notch and cancer: a double-edged sword. Cell Mol. Life Sci. 64, 2746–2762 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Kim, Y. et al. High delta-like ligand 4 expression correlates with a poor clinical outcome in gastric cancer. J. Cancer 10, 3172–3178 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Brzozowa-Zasada, M. The role of Notch ligand, delta-like ligand 4 (DLL4), in cancer angiogenesis — implications for therapy. Eur. Surg. 53, 274–280 (2021).

    Article  Google Scholar 

  150. Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Smith, D. C. et al. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin. Cancer Res. 20, 6295–6303 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Bais, C. et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141, 166–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Clarke, J. M. & Hurwitz, H. I. Ziv-aflibercept: binding to more than VEGF-A — does more matter? Nat. Rev. Clin. Oncol. 10, 10–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Cunningham, F. et al. The placental growth factor pathway and its potential role in macular degenerative disease. Curr. Eye Res. 44, 813–822 (2019).

    Article  PubMed  Google Scholar 

  156. Xu, L. et al. Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res. 66, 3971–3977 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Bressler, N. M. Age-related macular degeneration is the leading cause of blindness. JAMA 291, 1900–1901 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Finger, R. P. et al. Anti-vascular endothelial growth factor in neovascular age-related macular degeneration — a systematic review of the impact of anti-VEGF on patient outcomes and healthcare systems. BMC Ophthalmol. 20, 294 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  159. Perez, V. L. & Caspi, R. R. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 36, 354–363 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Ramakrishnan, S., Anand, V. & Roy, S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J. Neuroimmune Pharmacol. 9, 142–160 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Tolentino, M. J. et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103, 1820–1828 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Gragoudas, E. S. et al. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Ferrara, N., Damico, L., Shams, N., Lowman, H. & Kim, R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26, 859–870 (2006).

    Article  PubMed  Google Scholar 

  164. Rosenfeld, P. J. et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1419–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Brown, D. M. et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1432–1444 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Kim, E. et al. Evaluation of the structural, physicochemical, and biological characteristics of SB11, as Lucentis(®) (ranibizumab) biosimilar. Ophthalmol. Ther. 11, 639–652 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  167. Grisanti, S. & Ziemssen, F. Bevacizumab: off-label use in ophthalmology. Indian J. Ophthalmol. 55, 417–420 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  168. Heier, J. S. et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119, 2537–2548 (2012).

    Article  PubMed  Google Scholar 

  169. Li, E., Donati, S., Lindsley, K. B., Krzystolik, M. G. & Virgili, G. Treatment regimens for administration of anti-vascular endothelial growth factor agents for neovascular age-related macular degeneration. Cochrane Database Syst. Rev. 5, CD012208 (2020).

    PubMed  Google Scholar 

  170. Skelly, A., Bezlyak, V., Liew, G., Kap, E. & Sagkriotis, A. Treat and extend treatment interval patterns with anti-VEGF therapy in nAMD patients. Vision 3, 41 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  171. Antonetti, D. A., Klein, R. & Gardner, T. W. Diabetic retinopathy. N. Engl. J. Med. 366, 1227–1239 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Brown, D. M. et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 120, 2013–2022 (2013).

    Article  PubMed  Google Scholar 

  173. Brown, D. M. et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 122, 2044–2052 (2015).

    Article  PubMed  Google Scholar 

  174. Korobelnik, J. F. et al. Effect of baseline subretinal fluid on treatment outcomes in VIVID-DME and VISTA-DME studies. Ophthalmol. Retin. 3, 663–669 (2019).

    Article  Google Scholar 

  175. Mira, F., Paulo, M., Henriques, F. & Figueira, J. Switch to aflibercept in diabetic macular edema patients unresponsive to previous anti-VEGF therapy. J. Ophthalmol. 2017, 5632634 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  176. Laouri, M., Chen, E., Looman, M. & Gallagher, M. The burden of disease of retinal vein occlusion: review of the literature. Eye 25, 981–988 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Brown, D. M. et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117, 1124–1133.e1 (2010).

    Article  PubMed  Google Scholar 

  178. Varma, R. et al. Improved vision-related function after ranibizumab for macular edema after retinal vein occlusion: results from the BRAVO and CRUISE trials. Ophthalmology 119, 2108–2118 (2012).

    Article  PubMed  Google Scholar 

  179. Campochiaro, P. A. et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology 122, 538–544 (2015).

    Article  PubMed  Google Scholar 

  180. Daien, V. et al. Real-world data in retinal diseases treated with anti-vascular endothelial growth factor (anti-VEGF) therapy — a systematic approach to identify and characterize data sources. BMC Ophthalmol. 19, 206 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  181. Holz, F. G. et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br. J. Ophthalmol. 99, 220–226 (2015).

    Article  PubMed  Google Scholar 

  182. Van Aken, E. et al. Real-world outcomes in patients with diabetic macular edema treated long term with ranibizumab (VISION study). Clin. Ophthalmol. 14, 4173–4185 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  183. Wallsh, J. O. & Gallemore, R. P. Anti-VEGF-resistant retinal diseases: a review of the latest treatment options. Cells 10, 1049 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Keenan, T. D. et al. Progression of geographic atrophy in age-related macular degeneration: AREDS2 report number 16. Ophthalmology 125, 1913–1928 (2018).

    Article  PubMed  Google Scholar 

  185. Comparison of Age-related Macular Degeneration Treatments Trials Research Group et al. Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology 123, 1751–1761 (2016).

    Article  Google Scholar 

  186. Dugel, P. U. et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology 127, 72–84 (2020).

    Article  PubMed  Google Scholar 

  187. Khanani, A. M. et al. Safety outcomes of brolucizumab in neovascular age-related macular degeneration: results from the IRIS registry and Komodo Healthcare Map. JAMA Ophthalmol. 140, 20–28 (2022).

    Article  PubMed  Google Scholar 

  188. Heier, J. S. et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 399, 729–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Wykoff, C. C. et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 399, 741–755 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Brown, D. M. et al. Intravitreal nesvacumab (antiangiopoietin 2) plus aflibercept in diabetic macular edema: phase 2 RUBY randomized trial. Retina 42, 1111–1120 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Campochiaro, P. A. et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology 123, 1722–1730 (2016).

    Article  PubMed  Google Scholar 

  192. Moisseiev, E. & Loewenstein, A. Abicipar pegol — a novel anti-VEGF therapy with a long duration of action. Eye 34, 605–606 (2020).

    Article  PubMed  Google Scholar 

  193. Chandrasekaran, P. R. & Madanagopalan, V. G. KSI-301: antibody biopolymer conjugate in retinal disorders. Ther. Adv. Ophthalmol. 13, 25158414211027708 (2021).

    PubMed Central  PubMed  Google Scholar 

  194. Arepalli, S. & Kaiser, P. K. Pipeline therapies for neovascular age related macular degeneration. Int. J. Retina Vitreous 7, 55 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  195. Tan, C. S., Ngo, W. K., Chay, I. W., Ting, D. S. & Sadda, S. R. Neovascular age-related macular degeneration (nAMD): a review of emerging treatment options. Clin. Ophthalmol. 16, 917–933 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Hussain, R. M., Shaukat, B. A., Ciulla, L. M., Berrocal, A. M. & Sridhar, J. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration. Drug Des. Devel. Ther. 15, 2653–2665 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  197. Dunn, E. N., Hariprasad, S. M. & Sheth, V. S. An overview of the Fovista and rinucumab trials and the fate of anti-PDGF medications. Ophthalmic Surg. Lasers Imaging Retina 48, 100–104 (2017).

    Article  PubMed  Google Scholar 

  198. Holekamp, N. M. et al. Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmology 129, 295–307 (2022).

    Article  PubMed  Google Scholar 

  199. Sadtler, K., Collins, J., Byrne, J. D. & Langer, R. Parallel evolution of polymer chemistry and immunology: integrating mechanistic biology with materials design. Adv. Drug Deliv. Rev. 156, 65–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Tibbitt, M. W. & Langer, R. Living biomaterials. Acc. Chem. Res. 50, 508–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Liu, Y. et al. AAV8-antiVEGFfab ocular gene transfer for neovascular age-related macular degeneration. Mol. Ther. 26, 542–549 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Gelfman, C. M. et al. Comprehensive preclinical assessment of ADVM-022, an intravitreal anti-VEGF gene therapy for the treatment of neovascular AMD and diabetic macular edema. J. Ocul. Pharmacol. Ther. 37, 181–190 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48, 134–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Jones, A. et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc. Natl Acad. Sci. USA 108, 14578–14583 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Tom, I. et al. Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy. Proc. Natl Acad. Sci. USA 117, 9952–9963 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Moreira-Neto, C. A., Moult, E. M., Fujimoto, J. G., Waheed, N. K. & Ferrara, D. Choriocapillaris loss in advanced age-related macular degeneration. J. Ophthalmol. 2018, 8125267 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  208. Mullins, R. F. et al. Elevated membrane attack complex in human choroid with high risk complement factor H genotypes. Exp. Eye Res. 93, 565–567 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

    Article  PubMed  Google Scholar 

  210. Perez-Gutierrez, L., Li, P. & Ferrara, N. Endothelial cell diversity: the many facets of the crystal. FEBS J. https://doi.org/10.1111/febs.16660 (2022).

    Article  PubMed  Google Scholar 

  211. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Li, P. et al. LIF, a mitogen for choroidal endothelial cells, protects the choriocapillaris: implications for prevention of geographic atrophy. EMBO Mol. Med. 14, e14511 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Ferrara, N., Winer, J. & Henzel, W. J. Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc. Natl Acad. Sci. USA 89, 698–702 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Crespo-Garcia, S. et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 33, 818–832.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Markkanen, J. E., Rissanen, T. T., Kivela, A. & Yla-Herttuala, S. Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart — gene therapy. Cardiovasc. Res. 65, 656–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Deveza, L., Choi, J. & Yang, F. Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics 2, 801–814 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  219. Yla-Herttuala, S., Bridges, C., Katz, M. G. & Korpisalo, P. Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur. Heart J. 38, 1365–1371 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Lu, H. et al. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc. Natl Acad. Sci. USA 104, 12140–12145 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Zhong, C. et al. Inhibition of protein glycosylation is a novel pro-angiogenic strategy that acts via activation of stress pathways. Nat. Commun. 11, 6330 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117, 2362–2368 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat. Rev. Drug Discov. 9, 107–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Brakenhielm, E. et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ. Res. 94, 1579–1588 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730–10735 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  229. Seki, T. et al. Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning. J. Exp. Med. 215, 611–626 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Fischer, C. et al. A miR-327–FGF10–FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nat. Commun. 8, 2079 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  231. Yang, X. et al. Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions. JCI Insight 2, e89044 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  232. Seki, T. et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat. Commun. 7, 12152 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Honek, J. et al. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues. Proc. Natl Acad. Sci. USA 111, 14906–14911 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Sung, H. K. et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 17, 61–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. Eelen, G. et al. Endothelial cell metabolism. Physiol. Rev. 98, 3–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Sandler, A. et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  237. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Van Cutsem, E. et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 30, 3499–3506 (2012).

    Article  PubMed  Google Scholar 

  240. Tabernero, J. et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 16, 499–508 (2015).

    Article  CAS  PubMed  Google Scholar 

  241. Zhu, A. X. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 282–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Li, J. et al. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J. Clin. Oncol. 34, 1448–1454 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Motzer, R. J. et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 14, 552–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  245. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  246. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  248. van der Graaf, W. T. et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379, 1879–1886 (2012).

    Article  PubMed  Google Scholar 

  249. Demetri, G. D. et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 295–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  250. Grothey, A. et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 303–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  251. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  252. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  253. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Motzer, R. J. et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516–2524 (2006).

    Article  CAS  PubMed  Google Scholar 

  256. Younus, J., Verma, S., Franek, J. & Coakley, N.; Sarcoma Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care. Sunitinib malate for gastrointestinal stromal tumour in imatinib mesylate-resistant patients: recommendations and evidence. Curr. Oncol. 17, 4–10 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  258. Wells, S. A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  259. Mettu, N. B. et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial. JAMA Netw. Open 5, e2149040 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  260. Socinski, M. A. et al. IMpower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first-line metastatic nonsquamous NSCLC. J. Thorac. Oncol. 16, 1909–1924 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    Article  PubMed  Google Scholar 

  262. Pal, S. K. et al. Patient-reported outcomes in a phase 2 study comparing atezolizumab alone or with bevacizumab vs sunitinib in previously untreated metastatic renal cell carcinoma. BJU Int. 126, 73–82 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  263. Albiges, L. et al. TiNivo: safety and efficacy of tivozanib–nivolumab combination therapy in patients with metastatic renal cell carcinoma. Ann. Oncol. 32, 97–102 (2021).

    Article  CAS  PubMed  Google Scholar 

  264. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  265. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  266. Ouyang, T., Kan, X. & Zheng, C. Immune checkpoint inhibitors for advanced hepatocellular carcinoma: monotherapies and combined therapies. Front. Oncol. 12, 898964 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  267. Holz, F. G. et al. VEGF trap-eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br. J. Ophthalmol. 97, 278–284 (2013).

    Article  PubMed  Google Scholar 

  268. Korobelnik, J. F. et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 121, 2247–2254 (2014).

    Article  PubMed  Google Scholar 

  269. Mitchell, P. et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118, 615–625 (2011).

    Article  PubMed  Google Scholar 

  270. Zhou, Q. et al. One-year outcomes of novel VEGF decoy receptor therapy with intravitreal conbercept in diabetic retinopathy-induced macular edema. Mol. Vis. 25, 636–644 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Brown, D. M. et al. Intravitreal nesvacumab (anti-angiopoietin 2) plus aflibercept in diabetic macular edema: the phase 2 RUBY randomized trial. Retina 42, 1111–1120 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Nicolo, M., Ferro Desideri, L., Vagge, A. & Traverso, C. E. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin. Investig. Drugs 30, 193–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Cohen, M. N. et al. APEX: a phase II randomised clinical trial evaluating the safety and preliminary efficacy of oral X-82 to treat exudative age-related macular degeneration. Br. J. Ophthalmol. 105, 716–722 (2021).

    Article  PubMed  Google Scholar 

  274. Nguyen, Q. D. et al. The Tie2 signaling pathway in retinal vascular diseases: a novel therapeutic target in the eye. Int. J. Retina Vitreous 6, 48 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  275. Shaw, L. T. et al. Risuteganib — a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin. Investig. Drugs 29, 547–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  276. Gonzalez, V. H. et al. Safety and tolerability of intravitreal carotuximab (DE-122) in patients with persistent exudative age-related macular degeneration: a phase I study. Transl. Vis. Sci. Technol. 10, 27 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  277. Iyer, S., Radwan, A. E., Hafezi-Moghadam, A., Malyala, P. & Amiji, M. Long-acting intraocular delivery strategies for biological therapy of age-related macular degeneration. J. Control. Release 296, 140–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Algire, G. H., Chalkley, H. W., Legallais, F. Y. & Park, H. D. Vasculae reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  279. Michaelson, I. C. The mode of development of the vascular system of the retina with some observations on its significance for certain retinal disorders. Trans. Ophthalmol. Soc. UK 68, 137–180 (1948).

    Google Scholar 

  280. Langer, R., Brem, H., Falterman, K., Klein, M. & Folkman, J. Isolation of a cartilage factor that inhibits tumor neovascularization. Science 193, 70–72 (1976).

    Article  CAS  PubMed  Google Scholar 

  281. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Cao laboratory is supported through research grants from the Swedish Research Council, the Hong Kong Centre for Cerebro-cardiovascular Health Engineering, the Swedish Cancer Foundation, the Swedish Children’s Cancer Foundation, the Strategic Research Areas (SFO) — Stem Cell and Regenerative Medicine Foundation, the Karolinska Institute Foundation, the Karolinska Institute distinguished professor award and the NOVO Nordisk Foundation. N.F. is supported by the National Institutes of Health (NIH), the Champalimaud Foundation, the L. Hillblom Foundation, the J. Pritzker family fund and start-up funds from the University of California, San Diego (UCSD). R.L. is supported by the NIH, the Novo Nordisk Foundation, the Roche Foundation, the Juvenile Diabetes Foundation, the Helmsley Foundation and the Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and N.F. wrote the article. R.L. provided critical input on the content of the article.

Corresponding authors

Correspondence to Yihai Cao or Napoleone Ferrara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Donald McDonald, Lois Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 22, 476–495 (2023). https://doi.org/10.1038/s41573-023-00671-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00671-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer