Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A role for pericytes in coronary no-reflow

Abstract

Despite efforts to restore tissue perfusion after myocardial infarction, coronary no-reflow—a failure to achieve adequate reperfusion of the cardiac microcirculation—is a common complication, which correlates with an increased incidence of death and disability. The treatment of ischaemic stroke is also plagued by no-reflow and, in the brain, a major cause of this phenomenon has been shown to be contractile microvascular pericytes irreversibly constricting capillaries and dying. We propose that cardiac pericytes, which are the second most-common cell type in the heart, impede reperfusion of coronary capillaries in a similar fashion to those in the brain after a stroke. Pericyte constriction might contribute to morbidity in patients by causing microvascular obstruction, even after successful treatment of coronary artery block. The similarity of the no-reflow phenomenon in the brain and in the heart suggests that cardiac pericytes are a novel therapeutic target for coronary no-reflow after myocardial infarction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cerebral and coronary no-reflow.
Figure 2: Cerebral cortical and myocardial pericytes.
Figure 3: The role of pericytes in health and in no-reflow after ischaemia.

Similar content being viewed by others

References

  1. WHO. Cardiovascular diseases (CVDs) Fact Sheet No 317 [online], (2013).

  2. British Heart Foundation. Coronary Heart Disease Statistics 2012 [online], (2012).

  3. de Boer, M. J. et al. Limitation of infarct size and preservation of left ventricular function after primary coronary angioplasty compared with intravenous streptokinase in acute myocardial infarction. Circulation 90, 753–761 (1994).

    CAS  PubMed  Google Scholar 

  4. Kawano, H. et al. Histopathological findings of the no-reflow phenomenon following coronary intervention for acute coronary syndrome. Int. Heart J. 46, 327–332 (2005).

    PubMed  Google Scholar 

  5. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    CAS  PubMed  Google Scholar 

  6. Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281–292 (2009).

    PubMed  Google Scholar 

  7. Wu, K. C. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97, 765–772 (1998).

    CAS  PubMed  Google Scholar 

  8. Morishima, I. et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J. Am. Coll. Cardiol. 36, 1202–1209 (2000).

    CAS  PubMed  Google Scholar 

  9. Galiuto, L. et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J. Am. Coll. Cardiol. 51, 552–559 (2008).

    PubMed  Google Scholar 

  10. Bolognese, L. et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109, 1121–1126 (2004).

    PubMed  Google Scholar 

  11. Henriques, J. P. et al. Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation 107, 2115–2119 (2003).

    PubMed  Google Scholar 

  12. Gibson, C. M. et al. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation 105, 1909–1913 (2002).

    PubMed  Google Scholar 

  13. Brosh, D. et al. Effect of no-reflow during primary percutaneous coronary intervention for acute myocardial infarction on six-month mortality. Am. J. Cardiol. 99, 442–445 (2007).

    PubMed  Google Scholar 

  14. Reffelmann, T. & Kloner, R. A. The “no-reflow” phenomenon: basic science and clinical correlates. Heart 87, 162–168 (2002).

    PubMed  PubMed Central  Google Scholar 

  15. Ames, A., Lewis Wright, R., Kowada, M., Thurston, J. M. & Majno, G. Cerebral ischemia. II. The no-reflow phenomenon. Am. J. Pathol. 52, 437–453 (1968).

    PubMed  PubMed Central  Google Scholar 

  16. Hauck, E. F., Apostel, S., Hoffmann, J. F., Heimann, A. & Kempski, O. Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J. Cereb. Blood Flow Metab. 24, 383–391 (2004).

    PubMed  Google Scholar 

  17. Krug, A., de Rochemont, W. M. & Korb, G. Blood supply of the myocardium after temporary coronary occlusion. Circ. Res. 19, 57–62 (1966).

    CAS  PubMed  Google Scholar 

  18. Kloner, R. A., Ganote, C. E. & Jennings, R. B. The 'no-reflow' phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54, 1496–1508 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Przyklenk, K. & Kloner, R. A. 'Reperfusion injury' by oxygen-derived free radicals? Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow. Circ. Res. 64, 86–96 (1989).

    CAS  PubMed  Google Scholar 

  20. Engler, R. L., Schmid-Schönbein, G. W. & Pavelec, R. S. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am. J. Pathol. 111, 98–111 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. de la Torre, J. C., Fortin, T., Saunders, J. K., Butler, K. & Richard, M. T. The no-reflow phenomenon is a post-mortem artifact. Acta Neurochir. 115, 37–42 (1992).

    CAS  PubMed  Google Scholar 

  22. Ørn, S. et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur. Heart J. 30, 1978–1985 (2009).

    PubMed  Google Scholar 

  23. Beek, A. M., Nijveldt, R. & van Rossum, A. C. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int. J. Cardiovasc. Imaging 26, 49–55 (2010).

    CAS  PubMed  Google Scholar 

  24. Wu, K. C. CMR of microvascular obstruction and hemorrhage in myocardial infarction. J. Cardiovasc. Magn. Reson. 14, 68 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Cheseboro, J. H. et al. Thrombolysis in Myocardial Infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase: clinical findings through hospital discharge. Circulation 76, 142–154 (1987).

    Google Scholar 

  26. White, H. D. & Braunwald, E. Applying the open artery theory: use of predictive survival markers. Eur. Heart J. 19, 1132–1139 (1998).

    CAS  PubMed  Google Scholar 

  27. Ito, H. et al. Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 93, 1993–1999 (1996).

    CAS  PubMed  Google Scholar 

  28. Bolognese, L., Falsini, G., Liistro, F., Angioloi, P. & Ducci, K. Epicardial and microvascular reperfusion with primary percutaneous coronary intervention. Ital. Heart J. 6, 447–452 (2005).

    PubMed  Google Scholar 

  29. Heusch, G. et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation 120, 1822–1836 (2009).

    PubMed  Google Scholar 

  30. Leineweber, K. et al. Intense vasoconstriction in response to aspirate from stented saphenous vein aortocoronary bypass grafts. J. Am. Coll. Cardiol. 47, 981–986 (2006).

    PubMed  Google Scholar 

  31. Kleinbongard, P. et al. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ. Res. 108, 344–352 (2011).

    CAS  PubMed  Google Scholar 

  32. Jaffe, R., Charron, T., Puley, G., Dick, A. & Strauss, B. H. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 117, 3152–3156 (2008).

    PubMed  Google Scholar 

  33. Porto I. et al. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur. Heart J. 33, 2928–2938 (2012).

    PubMed  Google Scholar 

  34. Dalkara, T. & Arsava, E. M. Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J. Cereb. Blood Flow Metab. 32, 2091–2099 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, A. T. et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114, 32–39 (2006).

    PubMed  Google Scholar 

  36. Schwartz, B. G. & Kloner, R. A. Coronary no reflow. J. Mol. Cell. Cardiol. 52, 873–882 (2012).

    CAS  PubMed  Google Scholar 

  37. Heusch, G. et al. The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc. Res. 94, 237–245 (2012).

    CAS  PubMed  Google Scholar 

  38. Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    CAS  PubMed  Google Scholar 

  39. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    CAS  PubMed  Google Scholar 

  40. Hamilton, N. B., Attwell, D. & Hall, C. N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Crawford, C. et al. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol. (Oxf.) 202, 241–251 (2011).

    CAS  Google Scholar 

  42. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Puro, D. G. Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 14, 1–10 (2007).

    CAS  PubMed  Google Scholar 

  44. Lacar, B., Herman, P., Platel, J. C., Kubera, C., Hyder, F. & Bordey, A. Neural progenitor cells regulate capillary blood flow in the postnatal subventricular zone. J. Neurosci. 32, 16435–16448 (2010).

    Google Scholar 

  45. Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl Acad. Sci. USA 107, 22290–22295 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Lovick, T. A., Brown, L. A. & Kay, B. J. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92, 47–60 (1999).

    CAS  PubMed  Google Scholar 

  47. Borysova, L., Wray, S., Eisner, D. A. & Burdyga, T. How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone. Cell Calcium 54, 163–174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nees, S. et al. Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am. J. Physiol. Heart Circ. Physiol. 302, H69–H84 (2012).

    CAS  PubMed  Google Scholar 

  49. O'Farrell, F., Coleman, E., Kendrick, S. & Attwell, D. Microanatomy of pericytes in the rat ventricular myocardium. Proc. Physiol. Soc. 27, C84 (2012).

    Google Scholar 

  50. Tilton, R. G., Kilo, C. & Williamson, J. R. Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc. Res. 18, 325–335 (1979).

    CAS  PubMed  Google Scholar 

  51. Chintalgattu, V. et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci. Transl. Med. 5, 187ra69. (2013).

    PubMed  Google Scholar 

  52. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Armulik, A. et al. C. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    CAS  PubMed  Google Scholar 

  54. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fernández-Klett, F. et al. Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J. Cereb. Blood Flow Metab. 33, 2091–2099 (2013).

    Google Scholar 

  56. Jespersen, S. N. & Østergaard, L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J. Cereb. Blood Flow Metab. 32, 264–277 (2012).

    CAS  PubMed  Google Scholar 

  57. Juchem, G. et al. Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am. J. Physiol. Heart Circ. Physiol. 298, H754–H770 (2010).

    CAS  PubMed  Google Scholar 

  58. Nees, S., Weiss, D. R. & Juchem, G. Focus on cardiac pericytes. Pflügers Arch. 465, 779–787 (2013).

    CAS  PubMed  Google Scholar 

  59. Yamagishi, S.-I. et al. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem. Biophys. Res. Commun. 290, 973–978 (2002).

    CAS  PubMed  Google Scholar 

  60. Crea, F., Camici, P. G. & Bairey Merz, C. N. Coronary microvascular dysfunction: an update. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/eht513.

  61. Lee, S. et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat. Comm. 3, 1054–1058 (2012).

    Google Scholar 

  62. Mitchell, T. S., Bradley, J., Robinson, G. S., Shima, D. T. & Ng Y.-S. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis 11, 141–151 (2008).

    CAS  PubMed  Google Scholar 

  63. Niccoli, G., Spaziani, C. & Crea, F. Left ventricular remodeling and 1-year clinical follow-up of the REOPEN-AMI trial. J. Am. Coll. Cardiol. 63, 1454–1455 (2014).

    PubMed  Google Scholar 

  64. Matsugi, T., Chen, Q. & Anderson, D. R. Adenosine-induced relaxation of cultured bovine retinal pericytes. Invest. Ophthalmol. Vis. Sci. 38, 2695–701 (1997).

    CAS  PubMed  Google Scholar 

  65. Ramachandran, E., Frank, R. N. & Kennedy, A. Effects of endothelin on cultured bovine retinal microvascular pericytes. Invest. Ophthalmol. Vis. Sci. 34, 586–595 (1993).

    CAS  PubMed  Google Scholar 

  66. Niccoli, G. et al. Endothelin-1 and acute myocardial infarction: a no-reflow mediator after successful percutaneous myocardial revascularization. Eur. Heart J. 29, 1843–1850 (2006).

    Google Scholar 

  67. Galiuto, L. et al. Ischemia-reperfusion injury at the microvascular level: treatment by endothelin A-selective antagonist and evaluation by myocardial contrast echocardiography. Circulation 102, 3111–3116 (2000).

    CAS  PubMed  Google Scholar 

  68. Sakagami, K, Wu, D. M. & Puro, D. G. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J. Physiol. 521, 637–650 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Taniyama, Y. et al. Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 30, 1193–1199 (1997).

    CAS  PubMed  Google Scholar 

  70. Dore-Duffy, P., Katychev, A., Wang, X. & Van Buren, E. CNS microvascular pericytes exhibit multipotential stem cell activity. J. Cereb. Blood Flow Metab. 26, 613–624 (2006).

    CAS  PubMed  Google Scholar 

  71. Chen, C. W. et al. Human pericytes for ischemic heart repair. Stem Cells 31, 305–316 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  73. Campagnolo, P. et al. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121, 1735–1745 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ. Res. 109, 894–906 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Watanabe, N. et al. Three-dimensional microstructural abnormality of the coronary capillary network after myocardial reperfusion—comparison between 'reflow' and 'no-reflow'. Circ. J. 68, 868–872 (2004).

    PubMed  Google Scholar 

  76. Ebert, C. J. Handbuch der Lehre von den Geweben des Menschen und der Tiere, Vol. 1 (Leipzig, 1871).

    Google Scholar 

  77. Rouget, C. Memoire sur le developpement, la structures et les proprietes des capillaires sanguins et lymphatiques [French]. Arch. Physiol. Norm. Pathol. 5, 603–633 (1873).

    Google Scholar 

  78. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    CAS  PubMed  Google Scholar 

  79. Chan-Ling, T. et al. Desmin ensheathment ratio as an indicator of vessel stability: evidence in normal development and in retinopathy of prematurity. Am. J. Pathol. 165, 1301–1313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Göritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Fondation Leducq, Wellcome Trust, European Research Council, Medical Research Council (UK), and Rosetrees Trust for funding. We thank P. C. Adams (Newcastle Hospitals NHS Foundation Trust, UK), I. S. Cohen (SUNY Stony Brook University, NY, USA), R. Jolivet (University College London, UK), and A. Mishra (University College London, UK) for comments on the manuscript. We thank A. Nishiyama (University of Connecticut, CT, USA) and D. Dietrich (University Clinic Bonn, Germany) for providing NG2–DsRed mice.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to David Attwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Farrell, F., Attwell, D. A role for pericytes in coronary no-reflow. Nat Rev Cardiol 11, 427–432 (2014). https://doi.org/10.1038/nrcardio.2014.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing