Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction

Abstract

Millions of cardiomyocytes die immediately after myocardial infarction, regardless of whether the culprit coronary artery undergoes prompt revascularization. Residual ischaemia in the peri-infarct border zone causes further cardiomyocyte damage, resulting in a progressive decline in contractile function. To date, no treatment has succeeded in increasing the vascularization of the infarcted heart. In the past decade, new approaches that can target the heart’s highly plastic perivascular niche have been proposed. The perivascular environment is populated by mesenchymal progenitor cells, fibroblasts, myofibroblasts and pericytes, which can together mount a healing response to the ischaemic damage. In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation and stabilization, and control of the inflammatory response. Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction. In this Review, we describe the phenotypic changes that characterize the response of cardiac pericytes to ischaemia and the potential of pericyte-based therapy for restoring the perivascular niche after myocardial infarction. Pericyte-related therapies that can salvage the area at risk of an ischaemic injury include exogenously administered pericytes, pericyte-derived exosomes, pericyte-engineered biomaterials, and pharmacological approaches that can stimulate the differentiation of constitutively resident pericytes towards an arteriogenic phenotype. Promising preclinical results from in vitro and in vivo studies indicate that pericytes have crucial roles in the treatment of coronary artery disease and the prevention of post-ischaemic heart failure.

Key points

  • Cardiac pericytes interact with endothelial cells through physical and paracrine mechanisms to maintain normal vascular homeostasis.

  • In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation, and stabilization and control of the inflammatory response.

  • Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction; nevertheless, some age-related cardiac defects might be treatable using pharmacotherapeutic approaches or by supplying the heart with exogenous pericytes alone or in combination with other cell types.

  • A greater understanding of the molecular mechanisms underlying the numerous functions of cardiac pericytes could uncover novel therapeutic solutions for coronary artery disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of pericytes in cardiac and vascular homeostasis.
Fig. 2: The role of pericytes in the perivascular niche.
Fig. 3: Pericyte involvement in myocardial remodelling during acute myocardial infarction and subsequent transition to heart failure.
Fig. 4: Pericyte-based therapy for repair of the ischaemic heart.

Similar content being viewed by others

References

  1. Navarese, E. P. et al. Cardiac mortality in patients randomised to elective coronary revascularisation plus medical therapy or medical therapy alone: a systematic review and meta-analysis. Eur. Heart J. 42, 4638–4651 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Velagaleti, R. S. et al. Change in left ventricular ejection fraction with coronary artery revascularization and subsequent risk for adverse cardiovascular outcomes. Circ. Cardiovasc. Interv. 15, e011284 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, X., Barywani, S. B., Sigurjonsdottir, R. & Fu, M. Improved short and long term survival associated with percutaneous coronary intervention in the elderly patients with acute coronary syndrome. BMC Geriatr. 18, 137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kovach, C. P. et al. Association of residual ischemic disease with clinical outcomes after percutaneous coronary intervention. JACC Cardiovasc. Interv. 15, 2475–2486 (2022).

    Article  PubMed  Google Scholar 

  5. McClellan, M., Brown, N., Califf, R. M. & Warner, J. J. Call to action: urgent challenges in cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 139, e44–e54 (2019).

    Article  PubMed  Google Scholar 

  6. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pettersson, A. et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 80, 99–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Rubanyi, G. M. Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol. Ther. 21, 725–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan, L. et al. Growth factor for therapeutic angiogenesis in ischemic heart disease: a meta-analysis of randomized controlled trials. Front. Cell Dev. Biol. 10, 1095623 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Annex, B. H. & Simons, M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc. Res. 65, 649–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Nees, S. et al. Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am. J. Physiol. Heart Circ. Physiol. 302, H69–H84 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Peisker, F. et al. Mapping the cardiac vascular niche in heart failure. Nat. Commun. 13, 3027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Picchio, V. et al. The dynamic facets of the cardiac stroma: from classical markers to omics and translational perspectives. Am. J. Transl. Res. 14, 1172–1187 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle. Elife 4, e10036 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, Q. et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7, 12422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Invernici, G. et al. Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. Am. J. Pathol. 170, 1879–1892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zengin, E. et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133, 1543–1551 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Caplan, A. I. All MSCs are pericytes? Cell Stem Cell 3, 229–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Farrell, F. M. et al. Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. Elife 6, e29280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Birbrair, A. et al. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther. 5, 122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell stem Cell 16, 51–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Alvino, V. V., Mohammed, K. A. K., Gu, Y. & Madeddu, P. Approaches for the isolation and long-term expansion of pericytes from human and animal tissues. Front. Cardiovasc. Med. 9, 1095141 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Avolio, E. et al. Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. J. Clin. Invest. 132, e152308 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verkman, A. S. Aquaporins in endothelia. Kidney Int. 69, 1120–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Theodosiou, M., Laudet, V. & Schubert, M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol. Life Sci. 67, 1423–1445 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Baek, S. H. et al. Single cell transcriptomic analysis reveals organ specific pericyte markers and identities. Front. Cardiovasc. Med. 9, 876591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao, Z. et al. Proteomic profiling of concurrently isolated primary microvascular endothelial cells, pericytes, and vascular smooth muscle cells from adult mouse heart. Sci. Rep. 12, 8835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, L. et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci. Data 5, 180160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Hosseini-Alghaderi, S. & Baron, M. Notch3 in development, health and disease. Biomolecules 10, 485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoang, N. H., Strogolova, V., Mosley, J. J., Stuart, R. A. & Hosler, J. Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV. J. Biol. Chem. 294, 17669–17677 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tucker, N. R. et al. Myocyte-specific upregulation of ACE2 in cardiovascular disease: implications for SARS-CoV-2-mediated myocarditis. Circulation 142, 708–710 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, L., Li, X., Chen, M., Feng, Y. & Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 116, 1097–1100 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Nicin, L. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur. Heart J. 41, 1804–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Damisah, E. C., Hill, R. A., Tong, L., Murray, K. N. & Grutzendler, J. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat. Neurosci. 20, 1023–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, S. et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat. Commun. 3, 1054 (2012).

    Article  PubMed  Google Scholar 

  40. Kavanagh, D. P. J. & Kalia, N. Live intravital imaging of cellular trafficking in the cardiac microvasculature – beating the odds. Front. Immunol. 10, 2782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alex, L., Tuleta, I., Harikrishnan, V. & Frangogiannis, N. G. Validation of specific and reliable genetic tools to identify, label, and target cardiac pericytes in mice. J. Am. Heart Assoc. 11, e023171 (2022).

    Article  PubMed  Google Scholar 

  42. Leveen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes. Dev. 8, 1875–1887 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes. Dev. 8, 1888–1896 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Cornuault, L. et al. Partial mural cell ablation disrupts coronary vasculature integrity and induces systolic dysfunction. J. Am. Heart Assoc. 12, e029279 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Anastasia, A. et al. Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS ONE 9, e87406 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alvino, V. V. et al. In vitro and in vivo preclinical testing of pericyte-engineered grafts for the correction of congenital heart defects. J. Am. Heart Assoc. 9, e014214 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Avolio, E. et al. Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J. Am. Heart Assoc. 4, e002043 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Caporali, A. et al. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol. Ther. 171, 56–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Tefft, J. B. et al. Notch1 and Notch3 coordinate for pericyte-induced stabilization of vasculature. Am. J. Physiol. Cell Physiol. 322, C185–C196 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Spencer, H. L. et al. Role of TPBG (trophoblast glycoprotein) antigen in human pericyte migratory and angiogenic activity. Arterioscler. Thromb. Vasc. Biol. 39, 1113–1124 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, L. L., Khakoo, A. Y. & Chintalgattu, V. Cardiac pericytes function as key vasoactive cells to regulate homeostasis and disease. FEBS Open Bio 11, 207–225 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Cathery, W., Faulkner, A., Maselli, D. & Madeddu, P. Concise review: the regenerative journey of pericytes toward clinical translation. Stem Cell 36, 1295–1310 (2018).

    Article  Google Scholar 

  53. Spiranec Spes, K. et al. Heart-microcirculation connection: effects of ANP (atrial natriuretic peptide) on pericytes participate in the acute and chronic regulation of arterial blood pressure. Hypertension 76, 1637–1648 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, W. C. et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cell 33, 557–573 (2015).

    Article  CAS  Google Scholar 

  55. Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14, 41–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Olson, L. E. & Soriano, P. PDGFRβ signaling regulates mural cell plasticity and inhibits fat development. Dev. Cell 20, 815–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Navarro, R., Compte, M., Alvarez-Vallina, L. & Sanz, L. Immune regulation by pericytes: modulating innate and adaptive immunity. Front. Immunol. 7, 480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shibahara, T. et al. Pericyte-mediated tissue repair through PDGFRβ promotes peri-infarct astrogliosis, oligodendrogenesis, and functional recovery after acute ischemic stroke. eNeuro 7,ENEURO.0474-19.2020 (2020).

    Article  PubMed  Google Scholar 

  59. Minutti, C. M. et al. A macrophage-pericyte axis directs tissue restoration via amphiregulin-induced transforming growth factor beta activation. Immunity 50, 645–654.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lafuse, W. P., Wozniak, D. J. & Rajaram, M. V. S. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells 10, 51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cattaneo, M. et al. The longevity-associated BPIFB4 gene supports cardiac function and vascularization in aging cardiomyopathy. Cardiovasc Res 119, 1583–1595 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mastrullo, V. et al. Pericytes’ circadian clock affects endothelial cells’ synchronization and angiogenesis in a 3D tissue engineered scaffold. Front. Pharmacol. 13, 867070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakazato, R. et al. Disruption of Bmal1 impairs blood–brain barrier integrity via pericyte dysfunction. J. Neurosci. 37, 10052–10062 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khan, J. A. et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351, 176–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Sa da Bandeira, D., Casamitjana, J. & Crisan, M. Pericytes, integral components of adult hematopoietic stem cell niches. Pharmacol. Ther. 171, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Mangialardi, G., Cordaro, A. & Madeddu, P. The bone marrow pericyte: an orchestrator of vascular niche. Regen. Med. 11, 883–895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kretzschmar, K. et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc. Natl Acad. Sci. USA 115, E12245–E12254 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leaf, I. A. et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest. 127, 321–334 (2017).

    Article  PubMed  Google Scholar 

  69. Dias, D. O. et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat. Commun. 12, 5501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hannan, R. T. et al. Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biol. 10, 100056 (2021).

    Article  CAS  Google Scholar 

  71. Pham, T. T. D. et al. Heart and brain pericytes exhibit a pro-fibrotic response after vascular injury. Circ. Res. 129, e141–e143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mossahebi-Mohammadi, M., Quan, M., Zhang, J. S. & Li, X. FGF signaling pathway: a key regulator of stem cell pluripotency. Front. Cell Dev. Biol. 8, 79 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rolle, I. G. et al. Heart failure impairs the mechanotransduction properties of human cardiac pericytes. J. Mol. Cell Cardiol. 151, 15–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Chintalgattu, V. et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci. Transl. Med. 5, 187ra169 (2013).

    Article  Google Scholar 

  75. Tao, Y. K. et al. Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia. Int. J. Cardiol. 236, 413–422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zymek, P. et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J. Am. Coll. Cardiol. 48, 2315–2323 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Calcagno, D. M. et al. Single-cell and spatial transcriptomics of the infarcted heart define the dynamic onset of the border zone in response to mechanical destabilization. Nat. Cardiovasc. Res. 1, 1039–1055 (2022).

    Article  Google Scholar 

  78. Mayo, J. N. & Bearden, S. E. Driving the hypoxia-inducible pathway in human pericytes promotes vascular density in an exosome-dependent manner. Microcirculation 22, 711–723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ. Res. 109, 894–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, C. W. et al. Human pericytes for ischemic heart repair. Stem Cell 31, 305–316 (2013).

    Article  CAS  Google Scholar 

  81. Sakuma, R. et al. Brain pericytes acquire stemness via the Nrf2-dependent antioxidant system. Stem Cell 40, 641–654 (2022).

    Article  Google Scholar 

  82. Iacobazzi, D. et al. Increased antioxidant defense mechanism in human adventitia-derived progenitor cells is associated with therapeutic benefit in ischemia. Antioxid. Redox Signal. 21, 1591–1604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Le, D. E., Zhao, Y. & Kaul, S. Persistent coronary vasomotor tone during myocardial ischemia occurs at the capillary level and may involve pericytes. Front. Cardiovasc. Med. 9, 930492 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Methner, C., Cao, Z., Mishra, A. & Kaul, S. Mechanism and potential treatment of the “no reflow” phenomenon after acute myocardial infarction: role of pericytes and GPR39. Am. J. Physiol. Heart Circ. Physiol. 321, H1030–H1041 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ito, H. et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85, 1699–1705 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Korte, N. et al. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J. Clin. Invest. 132, e154118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hirunpattarasilp, C. et al. Hyperoxia evokes pericyte-mediated capillary constriction. J. Cereb. Blood Flow. Metab. 42, 2032–2047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Freitas, F. & Attwell, D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. Elife 11, e74211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Siao, C. J. et al. ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J. Exp. Med. 209, 2291–2305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, S. J. et al. Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction. J. Clin. Invest. 128, 5018–5033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Guo, R. B. et al. Iptakalim improves cerebral microcirculation in mice after ischemic stroke by inhibiting pericyte contraction. Acta Pharmacol. Sin. 43, 1349–1359 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Bell, R. M. et al. Remote ischaemic conditioning: defining critical criteria for success – report from the 11th Hatter Cardiovascular Workshop. Basic. Res. Cardiol. 117, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lau, J. K. et al. Remote ischemic preconditioning acutely improves coronary microcirculatory function. J. Am. Heart Assoc. 7, e009058 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li, Q. et al. Ischemia preconditioning alleviates ischemia/reperfusion injury-induced coronary no-reflow and contraction of microvascular pericytes in rats. Microvasc. Res. 142, 104349 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Matsuki, T. et al. Inhibition of platelet-derived growth factor pathway suppresses tubulointerstitial injury in renal congestion. J. Hypertens. 40, 1935–1949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Avolio, E. et al. Secreted protein acidic and cysteine rich matricellular protein is enriched in the bioactive fraction of the human vascular pericyte secretome. Antioxid. Redox Signal. 34, 1151–1164 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Schellings, M. W. et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J. Exp. Med. 206, 113–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, Y. T. et al. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Su, H., Zeng, H., Liu, B. & Chen, J. X. Sirtuin 3 is essential for hypertension-induced cardiac fibrosis via mediating pericyte transition. J. Cell. Mol. Med. 24, 8057–8068 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hung, C. F. et al. Pericyte-like cells undergo transcriptional reprogramming and distinct functional adaptations in acute lung injury. FASEB J. 35, e21323 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Proebstl, D. et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209, 1219–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Silvestre, J. S., Mallat, Z., Tedgui, A. & Levy, B. I. Post-ischaemic neovascularization and inflammation. Cardiovasc. Res. 78, 242–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Kittikulsuth, W. et al. Renal NG2-expressing cells have a macrophage-like phenotype and facilitate renal recovery after ischemic injury. Am. J. Physiol. Ren. Physiol. 321, F170–F178 (2021).

    Article  CAS  Google Scholar 

  106. Naduthottathil, M. R. et al. The effect of matrix stiffness of biomimetic gelatin nanofibrous scaffolds on human cardiac pericyte behavior. ACS Appl. Bio Mater. 2, 4385–4396 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Tsao, C. C. et al. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 24, 823–842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nguyen, P. K., Rhee, J. W. & Wu, J. C. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 1, 831–841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Hatzistergos, K. E. & Vedenko, A. Cardiac cell therapy 3.0: the beginning of the end or the end of the beginning? Circ. Res. 121, 95–97 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).

    Article  PubMed  Google Scholar 

  112. Campagnolo, P. et al. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121, 1735–1745 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Katare, R. G., Zhitian, Z., Sodeoka, M. & Sasaguri, S. Novel bisindolylmaleimide derivative inhibits mitochondrial permeability transition pore and protects the heart from reperfusion injury. Can. J. Physiol. Pharmacol. 85, 979–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Katare, R. G. et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J. Thorac. Cardiovasc. Surg. 137, 223–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Halestrap, A. P., Kerr, P. M., Javadov, S. & Woodfield, K. Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366, 79–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Lei, Z. et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J. Cell. Mol. Med. 19, 1994–2005 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jover, E. et al. Human adventitial pericytes provide a unique source of anti-calcific cells for cardiac valve engineering: role of microRNA-132-3p. Free. Radic. Biol. Med. 165, 137–151 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, B. et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 27, 882–897 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mayo, L. D., Kessler, K. M., Pincheira, R., Warren, R. S. & Donner, D. B. Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J. Biol. Chem. 276, 25184–25189 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vitiello, M., Cathcart, B., Caporali, A. & Meloni, M. Manipulating pericyte function with microRNAs. Methods Mol. Biol. 2235, 139–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Slater, S. C. et al. MicroRNA-532-5p regulates pericyte function by targeting the transcription regulator BACH1 and angiopoietin-1. Mol. Ther. 26, 2823–2837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Caporali, A. et al. p75(NTR)-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte–endothelial crosstalk in diabetes after limb ischaemia. Nat. Commun. 6, 8024 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Alvino, V. V. et al. Transplantation of allogeneic pericytes improves myocardial vascularization and reduces interstitial fibrosis in a swine model of reperfused acute myocardial infarction. J. Am. Heart Assoc. 7, e006727 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Avolio, E. et al. Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ. Res. 116, e81–e94 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Shen, M. et al. Stepwise generation of human induced pluripotent stem cell-derived cardiac pericytes to model coronary microvascular dysfunction. Circulation 147, 515–518 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Avolio, E., Alvino, V. V., Ghorbel, M. T. & Campagnolo, P. Perivascular cells and tissue engineering: current applications and untapped potential. Pharmacol. Ther. 171, 83–92 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mastrullo, V., Cathery, W., Velliou, E., Madeddu, P. & Campagnolo, P. Angiogenesis in tissue engineering: as nature intended? Front. Bioeng. Biotechnol. 8, 188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wendel, J. S. et al. Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cell Transl. Med. 4, 1324–1332 (2015).

    Article  CAS  Google Scholar 

  130. Schaefer, J. A., Guzman, P. A., Riemenschneider, S. B., Kamp, T. J. & Tranquillo, R. T. A cardiac patch from aligned microvessel and cardiomyocyte patches. J. Tissue Eng. Regen. Med. 12, 546–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Riemenschneider, S. B. et al. Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials 97, 51–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Carrabba, M. & Madeddu, P. Current strategies for the manufacture of small size tissue engineering vascular grafts. Front. Bioeng. Biotechnol. 6, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Campagnolo, P. et al. Pericyte seeded dual peptide scaffold with improved endothelialization for vascular graft tissue engineering. Adv. Healthc. Mater. 5, 3046–3055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alvino, V. V. et al. Reconstruction of the swine pulmonary artery using a graft engineered with syngeneic cardiac pericytes. Front. Bioeng. Biotechnol. 9, 715717 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Carrabba, M. et al. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia. Biofabrication 8, 015020 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Carrabba, M. et al. Fabrication of new hybrid scaffolds for in vivo perivascular application to treat limb ischemia. Front. Cardiovasc. Med. 7, 598890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Waters, R. et al. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 69, 95–106 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Hao, X. et al. Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem. Biophys. Res. Commun. 315, 1058–1063 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Chandrasekera, D. & Katare, R. Exosomal microRNAs in diabetic heart disease. Cardiovasc. Diabetol. 21, 122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fayez, S. S. et al. Role of different types of miRNAs in some cardiovascular diseases and therapy-based miRNA strategies: a mini review. Biomed. Res. Int. 2022, 2738119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gaceb, A., Barbariga, M., Ozen, I. & Paul, G. The pericyte secretome: potential impact on regeneration. Biochimie 155, 16–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Gaceb, A., Ozen, I., Padel, T., Barbariga, M. & Paul, G. Pericytes secrete pro-regenerative molecules in response to platelet-derived growth factor-BB. J. Cereb. Blood Flow. Metab. 38, 45–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, C. et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc. Natl Acad. Sci. USA 116, 7455–7464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yuan, X. et al. Exosomes derived from pericytes improve microcirculation and protect blood–spinal cord barrier after spinal cord injury in mice. Front. Neurosci. 13, 319 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wu, Y. F. et al. Development of a cell-free strategy to recover aged skeletal muscle after disuse. J. Physiol. https://doi.org/10.1113/JP282867 (2022).

  146. Aday, S. et al. Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol. Ther. 29, 2239–2252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Aguilera, K. Y. & Brekken, R. A. Recruitment and retention: factors that affect pericyte migration. Cell Mol. Life Sci. 71, 299–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Rufaihah, A. J. et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 34, 8195–8202 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Awada, H. K., Johnson, N. R. & Wang, Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J. control. Release 207, 7–17 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Smart, N. et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Quijada, P., Trembley, M. A. & Small, E. M. The role of the epicardium during heart development and repair. Circ. Res. 126, 377–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Berthiaume, A. A. et al. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep. 22, 8–16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Methner, C. et al. Pericyte constriction underlies capillary derecruitment during hyperemia in the setting of arterial stenosis. Am. J. Physiol. Heart Circ. Physiol. 317, H255–H263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walsh, C. L. et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18, 1532–1541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ren, H. et al. High-resolution 3D heart models of cardiomyocyte subpopulations in cleared murine heart. Front. Physiol. 13, 779514 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Azarine, A., Scalbert, F. & Garcon, P. Cardiac functional imaging. Presse Med. 51, 104119 (2022).

    Article  PubMed  Google Scholar 

  158. Orlova, V. V. et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 9, 1514–1531 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Iendaltseva, O., Orlova, V. V., Mummery, C. L., Danen, E. H. J. & Schmidt, T. Fibronectin patches as anchoring points for force sensing and transmission in human induced pluripotent stem cell-derived pericytes. Stem Cell Rep. 14, 1107–1122 (2020).

    Article  CAS  Google Scholar 

  160. Sykes, M. Developing pig-to-human organ transplants. Science 378, 135–136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Haubner, B. J. et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 118, 216–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Ross Stewart, K. M., Walker, S. L., Baker, A. H., Riley, P. R. & Brittan, M. Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc. Res. 118, 1667–1679 (2022).

    Article  PubMed  Google Scholar 

  164. Orlova, V. V. et al. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler. Thromb. Vasc. Biol. 34, 177–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Streef, T. J. & Smits, A. M. Epicardial contribution to the developing and injured heart: exploring the cellular composition of the epicardium. Front. Cardiovasc. Med. 8, 750243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Knight-Schrijver, V. R. et al. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. Nat. Cardiovasc. Res. 1, 1215–1229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Maselli, D. et al. Epicardial slices: an innovative 3D organotypic model to study epicardial cell physiology and activation. NPJ Regen. Med. 7, 7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nayak, R. C., Berman, A. B., George, K. L., Eisenbarth, G. S. & King, G. L. A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J. Exp. Med. 167, 1003–1015 (1988).

    Article  CAS  PubMed  Google Scholar 

  169. Lee, L. L., Khakoo, A. Y. & Chintalgattu, V. Isolation and purification of murine cardiac pericytes. J. Vis. Exp. https://doi.org/10.3791/59571 (2019).

  170. Avolio, E. et al. The SARS-CoV-2 spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease. Clin. Sci. 135, 2667–2689 (2021).

    Article  CAS  Google Scholar 

  171. Brumback, B. D. et al. Human cardiac pericytes are susceptible to SARS-CoV-2 infection. JACC Basic. Transl. Sci. 8, 109–120 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.A. and P.M. are supported by a Heart Research UK translational project grant (RG2697/21/23); R.K. is supported by a Smart Idea Project grant (UOOX2205); and P.C. is supported by a National Centre for the Replacement, Refinement & Reduction of Animals in Research Skills and Knowledge grant (NC/T001216/1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding authors

Correspondence to Elisa Avolio or Paolo Madeddu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Alexander Birbrair, Jian-Xiong Chen and Jean-Sébastien Silvestre for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avolio, E., Campagnolo, P., Katare, R. et al. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat Rev Cardiol 21, 106–118 (2024). https://doi.org/10.1038/s41569-023-00913-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00913-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing