Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac remodeling at the population level—risk factors, screening, and outcomes

Abstract

The prevalence of heart failure is increasing in the western world. Current efforts aim to identify heart failure at its earliest and preclinical stages in order to begin treatment and prevent deterioration before the symptoms escalate. Cardiac remodeling is the process of structural and functional changes in the left ventricle in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure. Cardiac remodeling is classified as isolated cardiac hypertrophy or as hypertrophy in combination with left ventricular dilatation, and has been used as a surrogate end point in clinical trials. In this article, we review population-based studies of cardiac remodeling, providing insights into the associations between remodeling and risk factors such as age, sex, ethnicity, body stature and composition, and disease. We also highlight the importance of screening for subclinical heart failure and describe the strategies used to do so.

Key Points

  • Cardiac remodeling refers to the structural and functional changes of left ventricle in response to internal or external cardiovascular damage or pathogenic risk factors; cardiac remodeling precedes clinical heart failure

  • Geometric patterns of cardiac remodeling are defined by evaluation of left ventricular (LV) volumes and mass by imaging modalities, such as echocardiography or MRI

  • LV mass and volumes vary by age, sex, body stature and composition, and risk factors for cardiovascular disease

  • Patients with elevated or increasing LV mass, LV dilatation, or both, have unfavorable cardiovascular outcomes

  • Echocardiography is the least-expensive and most-widely available imaging modality to screen for LV remodeling; however, no current evidence supports screening for LV remodeling in the general population

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kaplan–Meier curves for incident CHF by sex-specific quartiles of LV mass.
Figure 2: The patterns of cardiac remodeling, as defined by evaluation of LV mass and end-diastolic volume.
Figure 3: Wall stress increases the tension in the myocardium and thus reduces myocardial blood flow and counteracts myocardial shortening.
Figure 4: Concentric and eccentric hypertrophy can be distinguished by the orientation in which individual sarcomeres are added.
Figure 5: The sex-specific associations between age groups and LV volume and mass in the MESA study.

Similar content being viewed by others

References

  1. Cohn, J. N., Ferrari, R. & Sharpe, N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35, 569–582 (2000).

    CAS  PubMed  Google Scholar 

  2. Gardin, J. M. et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am. J. Cardiol. 87, 1051–1057 (2001).

    CAS  PubMed  Google Scholar 

  3. Kannel, W. B. Hazards, risks, and threats of heart disease from the early stages to symptomatic coronary heart disease and cardiac failure. Cardiovasc. Drugs and Ther. 11, 199–212 (1997).

    Google Scholar 

  4. Hill, A. B. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lang, R. M. et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18, 1440–1463 (2005).

    PubMed  Google Scholar 

  6. Rodriguez, C. J. et al. Left ventricular mass and ventricular remodeling among Hispanic subgroups compared with non-Hispanic blacks and whites: MESA (Multi-ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 55, 234–242 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Bluemke, D. A. et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 52, 2148–2155 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Kawut, S. M. et al. Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study. Circulation 123, 2542–2551 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Gidding, S. S. et al. Low cardiovascular risk is associated with favorable left ventricular mass, left ventricular relative wall thickness, and left atrial size: the CARDIA study. J. Am. Soc. Echocardiogr. 23, 816–822 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Harvey, W. Exercitatio anatomica de motu cordis et sanguinis in animalibus (1628).

    Google Scholar 

  11. Katz, A. M. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc. Drugs Ther. 16, 245–249 (2002).

    CAS  PubMed  Google Scholar 

  12. Fulton R. M., Hutchinson, E. C. & Jones, M. A. Ventricular weight in cardiac hypertrophy. Br. Heart J. 14, 413–420 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Katz, A. M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med 322, 100–110 (1990).

    CAS  PubMed  Google Scholar 

  14. Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600 (2006).

    CAS  PubMed  Google Scholar 

  15. van den Borne, S. W. et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7, 30–37 (2010).

    PubMed  Google Scholar 

  16. Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest 56, 56–64 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lorell, B. H. & Carabello, B. A. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102, 470–479 (2000).

    CAS  PubMed  Google Scholar 

  18. Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B. & Ho, K. K. The progression from hypertension to congestive heart failure. JAMA 275, 1557–1562 (1996).

    CAS  PubMed  Google Scholar 

  19. Konstam, M. A., Kramer, D. G., Patel, A. R., Maron, M. S. & Udelson, J. E. Left ventricular remodeling in heart failure current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging 4, 98–108 (2011).

    PubMed  Google Scholar 

  20. Gajarsa, J. J. & Kloner, R. A. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail. Rev. 16, 13–21 (2011).

    PubMed  Google Scholar 

  21. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D. & Lima, J. A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 57, 891–903 (2011).

    PubMed  Google Scholar 

  22. Klem, I. & Kim, R. J. Assessment of microvascular injury after acute myocardial infarction: importance of the area at risk. Nat. Clin. Pract. Cardiovasc. Med. 5, 756–757 (2008).

    PubMed  Google Scholar 

  23. Wu, K. C. & Lima, J. A. Noninvasive imaging of myocardial viability: current techniques and future developments. Circ. Res. 93, 1146–1158 (2003).

    CAS  PubMed  Google Scholar 

  24. Yu, C. M. et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 105, 438–445 (2002).

    PubMed  Google Scholar 

  25. St John Sutton, M. G. et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107, 1985–1990 (2003).

    PubMed  Google Scholar 

  26. Groenning, B. A. et al. Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J. Am. Coll. Cardiol. 36, 2072–2080 (2000).

    CAS  PubMed  Google Scholar 

  27. Chan, A. K. et al. Aldosterone receptor antagonism induces reverse remodeling when added to angiotensin receptor blockade in chronic heart failure. J. Am. Coll. Cardiol. 50, 591–596 (2007).

    CAS  PubMed  Google Scholar 

  28. Doughty, R. N., Whalley, G. A., Gamble, G., MacMahon, S. & Sharpe, N. Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. Australia-New Zealand Heart Failure Research Collaborative Group. J. Am. Coll. Cardiol. 29, 1060–1066 (1997).

    CAS  PubMed  Google Scholar 

  29. Mor-Avi, V. et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur. J. Echocardiogr. 12, 167–205 (2011).

    PubMed  Google Scholar 

  30. Bursi, F. et al. Systolic and diastolic heart failure in the community. JAMA 296, 2209–2216 (2006).

    CAS  PubMed  Google Scholar 

  31. Gardin, J. M. et al. Sex, age, and disease affect echocardiographic left ventricular mass and systolic function in the free-living elderly. The Cardiovascular Health Study. Circulation 91, 1739–1748 (1995).

    CAS  PubMed  Google Scholar 

  32. Gardin, J. M. et al. Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. The CARDIA study. Coronary Artery Risk Development in Young Adults. Circulation 92, 380–387 (1995).

    CAS  PubMed  Google Scholar 

  33. Drazner, M. H. et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension 46, 124–129 (2005).

    CAS  PubMed  Google Scholar 

  34. Jain, A. et al. Cardiovascular imaging for assessing cardiovascular risk in asymptomatic men versus women: the multi-ethnic study of atherosclerosis (MESA). Circ. Cardiovasc. Imaging 4, 8–15 (2011).

    PubMed  Google Scholar 

  35. Salton, C. J. et al. Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J. Am. Coll. Cardiol. 39, 1055–1060 (2002).

    PubMed  Google Scholar 

  36. Cheng, S. et al. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Circ. Cardiovasc. Imaging 2, 191–198 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Natori, S. et al. Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am. J. Roentgenol. 186 (Suppl. 2), S357–S365 (2006).

    PubMed  Google Scholar 

  38. Olivetti, G., Melissari, M., Capasso, J. M. & Anversa, P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 68, 1560–1568 (1991).

    CAS  PubMed  Google Scholar 

  39. Savage, D. D., Levy, D., Dannenberg, A. L., Garrison, R. J. & Castelli, W. P. Association of echocardiographic left ventricular mass with body size, blood pressure and physical activity (the Framingham Study). Am. J. Cardiol. 65, 371–376 (1990).

    CAS  PubMed  Google Scholar 

  40. Lindroos, M., Kupari, M., Heikkila, J. & Tilvis, R. Predictors of left ventricular mass in old age: an echocardiographic, clinical and biochemical investigation of a random population sample. Eur. Heart J. 15, 769–780 (1994).

    CAS  PubMed  Google Scholar 

  41. De Simone, G. et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J. Hypertens. 20, 323–331 (2002).

    CAS  PubMed  Google Scholar 

  42. Desai, R. V. et al. Natural history of concentric left ventricular geometry in community-dwelling older adults without heart failure during seven years of follow-up. Am. J. Cardiol. 107, 321–324 (2011).

    PubMed  Google Scholar 

  43. Lindroos, M., Kupari, M., Heikkila, J. & Tilvis, R. Echocardiographic evidence of left ventricular hypertrophy in a general aged population. Am. J. Cardiol. 74, 385–390 (1994).

    CAS  PubMed  Google Scholar 

  44. Ganau, A. et al. Ageing induces left ventricular concentric remodelling in normotensive subjects. J. Hypertens. 13, 1818–1822 (1995).

    CAS  PubMed  Google Scholar 

  45. Lieb, W. et al. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation 119, 3085–3092 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Cheng, S. et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122, 570–578 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Lam, C. S. et al. Familial aggregation of left ventricular geometry and association with parental heart failure: the Framingham Heart Study. Circ. Cardiovasc. Genet. 3, 492–498 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Bella, J. N. et al. Heritability of left ventricular dimensions and mass in American Indians: The Strong Heart Study. J. Hypertens. 22, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  49. Morita, H. et al. Single-gene mutations and increased left ventricular wall thickness in the community. Circulation 113, 2697–2705 (2006).

    PubMed  Google Scholar 

  50. O'Donnell, C. J. & Nabel, E. G. Cardiovascular genomics, personalized medicine, and the National Heart, Lung, and Blood Institute: part I: the beginning of an era. Circ. Cardiovasc. Genet. 1, 51–57 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Lauer, M. S., Anderson, K. M., Kannel, W. B. & Levy, D. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA 266, 231–236 (1991).

    CAS  PubMed  Google Scholar 

  52. Chinali, M. et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J. Am. Coll. Cardiol. 47, 2267–2273 (2006).

    PubMed  Google Scholar 

  53. Turkbey, E. B. et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc. Imaging 3, 266–274 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Chirinos, J. A. et al. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension 56, 91–98 (2010).

    CAS  PubMed  Google Scholar 

  55. De Simone, G. et al. Interaction between body size and cardiac workload: influence on left ventricular mass during body growth and adulthood. Hypertension 31, 1077–1082 (1998).

    CAS  PubMed  Google Scholar 

  56. De Simone, G. et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J. Am. Coll. Cardiol. 20, 1251–1260 (1992).

    CAS  PubMed  Google Scholar 

  57. Gidding, S. S. et al. Cardiac function in smokers and nonsmokers: the CARDIA study. The Coronary Artery Risk Development in Young Adults Study. J. Am. Coll. Cardiol. 26, 211–216 (1995).

    CAS  PubMed  Google Scholar 

  58. Gardin, J. M. et al. Left ventricular mass in the elderly. The Cardiovascular Health Study. Hypertension 29, 1095–1103 (1997).

    CAS  PubMed  Google Scholar 

  59. Heckbert, S. R. et al. Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 48, 2285–2292 (2006).

    PubMed  PubMed Central  Google Scholar 

  60. Basavarajaiah, S. et al. Ethnic differences in left ventricular remodeling in highly-trained athletes relevance to differentiating physiologic left ventricular hypertrophy from hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 51, 2256–2262 (2008).

    PubMed  Google Scholar 

  61. Turkbey, E. B. et al. Physical activity and physiological cardiac remodelling in a community setting: the Multi-Ethnic Study of Atherosclerosis (MESA). Heart 96, 42–48 (2010).

    CAS  PubMed  Google Scholar 

  62. Rodriguez, C. J. et al. Association between social isolation and left ventricular mass. Am. J. Med. 124, 164–170 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Cohn, J. N. Pharmacotherapy: inhibiting LV remodeling-the need for a targeted approach. Nat. Rev. Cardiol. 8, 248–249 (2011).

    CAS  PubMed  Google Scholar 

  64. Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L. & Healy, B. Cellular mechanisms of myocardial infarct expansion. Circulation 78, 186–201 (1988).

    CAS  PubMed  Google Scholar 

  65. Kramer, C. M. et al. Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88, 1279–1288 (1993).

    CAS  PubMed  Google Scholar 

  66. Mckay, R. G. et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74, 693–702 (1986).

    CAS  PubMed  Google Scholar 

  67. Chareonthaitawee, P., Christian, T. F., Hirose, K., Gibbons, R. J. & Rumberger, J. A. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J. Am. Coll. Cardiol. 25, 567–573 (1995).

    CAS  PubMed  Google Scholar 

  68. van Gilst, W. H., Kingma, J. H., Peels, K. H., Dambrink, J. H. & St John, S. M. Which patient benefits from early angiotensin-converting enzyme inhibition after myocardial infarction? Results of one-year serial echocardiographic follow-up from the Captopril and Thrombolysis Study (CATS). J. Am. Coll. Cardiol. 28, 114–121 (1996).

    CAS  PubMed  Google Scholar 

  69. Pfeffer, M. A. & Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161–1172 (1990).

    CAS  PubMed  Google Scholar 

  70. Orn, S. et al. Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am. J. Cardiol. 99, 1109–1114 (2007).

    PubMed  Google Scholar 

  71. Verma, A. et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (valsartan in acute myocardial infarction) Echocardiographic Study. JACC Cardiovasc. Imaging 1, 582–591 (2008).

    PubMed  Google Scholar 

  72. Bonow, R. O. et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 118, e523–e661 (2008).

    PubMed  Google Scholar 

  73. Gopinathannair, R., Sullivan, R. & Olshansky, B. Tachycardia-mediated cardiomyopathy: recognition and management. Curr. Heart Fail. Rep. 6, 257–264 (2009).

    PubMed  Google Scholar 

  74. Dhingra, R. et al. Cross-sectional relations of electrocardiographic QRS duration to left ventricular dimensions: the Framingham Heart Study. J. Am. Coll. Cardiol. 45, 685–689 (2005).

    PubMed  Google Scholar 

  75. Vernooy, K., Verbeek, X. A., Peschar, M. & Prinzen, F. W. Relation between abnormal ventricular impulse conduction and heart failure. J. Interv. Cardiol. 16, 557–562 (2003).

    PubMed  Google Scholar 

  76. Roman, M. J. et al. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J. Hypertension 28, 384–388 (2010).

    CAS  Google Scholar 

  77. Palmieri, V. et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation 103, 102–107 (2001).

    CAS  PubMed  Google Scholar 

  78. Bella, J. N. et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am. J. Cardiol. 87, 1260–1265 (2001).

    CAS  PubMed  Google Scholar 

  79. Velagaleti, R. S. et al. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circ. Cardiovasc. Imaging 3, 257–263 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Eguchi, K. et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am. J. Cardiol. 101, 1787–1791 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Cerasola, G. et al. Left ventricular mass in hypertensive patients with mild-to-moderate reduction of renal function. Nephrology (Carlton.) 15, 203–210 (2010).

    Google Scholar 

  82. Patel, P. C. et al. Association of cystatin C with left ventricular structure and function: the Dallas Heart Study. Circ. Heart Fail. 2, 98–104 (2009).

    CAS  PubMed  Google Scholar 

  83. Nasir, K. et al. Regional left ventricular function in individuals with mild to moderate renal insufficiency: the Multi-Ethnic Study of Atherosclerosis. Am. Heart J. 153, 545–551 (2007).

    PubMed  Google Scholar 

  84. Jullien, V., Gosse, P., Ansoborlo, P., Lemetayer, P. & Clementy, J. Relationship between left ventricular mass and serum cholesterol level in the untreated hypertensive. J. Hypertension 16, 1043–1047 (1998).

    CAS  Google Scholar 

  85. Horio, T., Miyazato, J., Kamide, K., Takiuchi, S. & Kawano, Y. Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension. Am. J. Hypertens. 16, 938–944 (2003).

    CAS  PubMed  Google Scholar 

  86. Celentano, A. et al. Left ventricular geometry and arterial function in hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 11, 312–319 (2001).

    CAS  PubMed  Google Scholar 

  87. Velagaleti, R. S. et al. Relations of lipid concentrations to heart failure incidence: the Framingham Heart Study. Circulation 120, 2345–2351 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chinali, M. et al. Comparison of cardiac structure and function in American Indians with and without the metabolic syndrome (the Strong Heart Study). Am. J. Cardiol. 93, 40–44 (2004).

    PubMed  Google Scholar 

  89. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The Framingham Heart Study. Ann. Intern. Med. 110, 101–107 (1989).

    CAS  PubMed  Google Scholar 

  90. Levy, D., Salomon, M., D'Agostino, R. B., Belanger, A. J. & Kannel, W. B. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation 90, 1786–1793 (1994).

    CAS  PubMed  Google Scholar 

  91. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322, 1561–1566 (1990).

    CAS  PubMed  Google Scholar 

  92. Haider, A. W., Larson, M. G., Benjamin, E. J. & Levy, D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J. Am. Coll. Cardiol. 32, 1454–1459 (1998).

    CAS  PubMed  Google Scholar 

  93. Gottdiener, J. S. et al. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 35, 1628–1637 (2000).

    CAS  PubMed  Google Scholar 

  94. De Simone, G., Gottdiener, J. S., Chinali, M. & Maurer, M. S. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular Health Study. Eur. Heart J. 29, 741–747 (2008).

    PubMed  Google Scholar 

  95. Devereux, R. B. et al. Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the Strong Heart Study. Am. J. Cardiol. 86, 1090–1096 (2000).

    CAS  PubMed  Google Scholar 

  96. De Simone, G. et al. Left ventricular mass and incident hypertension in individuals with initial optimal blood pressure: the Strong Heart Study. J. Hypertension 26, 1868–1874 (2008).

    CAS  Google Scholar 

  97. Mazza, A., Tikhonoff, V., Casiglia, E. & Pessina, A. C. Predictors of congestive heart failure mortality in elderly people from the general population. Int. Heart J. 46, 419–431 (2005).

    PubMed  Google Scholar 

  98. Krumholz, H. M., Larson, M. & Levy, D. Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J. Am. Coll. Cardiol. 25, 879–884 (1995).

    CAS  PubMed  Google Scholar 

  99. Koren, M. J., Devereux, R. B., Casale, P. N., Savage, D. D. & Laragh, J. H. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann. Intern. Med. 114, 345–352 (1991).

    CAS  PubMed  Google Scholar 

  100. Ghali, J. K., Liao, Y. & Cooper, R. S. Influence of left ventricular geometric patterns on prognosis in patients with or without coronary artery disease. J. Am. Coll. Cardiol. 31, 1635–1640 (1998).

    CAS  PubMed  Google Scholar 

  101. Di Tullio, M. R., Zwas, D. R., Sacco, R. L., Sciacca, R. R. & Homma, S. Left ventricular mass and geometry and the risk of ischemic stroke. Stroke 34, 2380–2384 (2003).

    PubMed  PubMed Central  Google Scholar 

  102. Verdecchia, P. et al. Adverse prognostic significance of concentric remodeling of the left ventricle in hypertensive patients with normal left ventricular mass. J. Am. Coll. Cardiol. 25, 871–878 (1995).

    CAS  PubMed  Google Scholar 

  103. Drazner, M. H. et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 43, 2207–2215 (2004).

    PubMed  Google Scholar 

  104. Fernandes, V. R. S. et al. The influence of left ventricular size and global function on regional myocardial contraction and relaxation in an adult population free of cardiovascular disease: a tagged CMR study of the MESA cohort. J. Cardiovasc. Magn. Reson. 9, 921–930 (2007).

    PubMed  Google Scholar 

  105. Rosen, B. D. et al. Left ventricular concentric remodeling is associated with decreased global and regional systolic function: the Multi-Ethnic Study of Atherosclerosis. Circulation 112, 984–991 (2005).

    PubMed  Google Scholar 

  106. Devereux, R. B. et al. A population-based assessment of left ventricular systolic dysfunction in middle-aged and older adults: the Strong Heart Study. Am. Heart J. 141, 439–446 (2001).

    CAS  PubMed  Google Scholar 

  107. Kannel, W. B. et al. Profile for estimating risk of heart failure. Arch. Intern. Med 159, 1197–1204 (1999).

    CAS  PubMed  Google Scholar 

  108. Butler, J. et al. Incident heart failure prediction in the elderly: the health ABC heart failure score. Circ. Heart Fail. 1, 125–133 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Gupta, S. et al. Association of Health Aging and Body Composition (ABC) Heart Failure score with cardiac structural and functional abnormalities in young individuals. Am. Heart J. 159, 817–824 (2010).

    PubMed  Google Scholar 

  110. Hunt, S. A. et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). J. Am. Coll. Cardiol. 38, 2101–2113 (2001).

    CAS  PubMed  Google Scholar 

  111. Cheitlin, M. D. et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation 108, 1146–1162 (2003).

    PubMed  Google Scholar 

  112. Shapiro, E. P. et al. Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation 79, 706–711 (1989).

    CAS  PubMed  Google Scholar 

  113. Devereux, R. B. et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am. J. Cardiol. 57, 450–458 (1986).

    CAS  PubMed  Google Scholar 

  114. Gottdiener, J. S., Livengood, S. V., Meyer, P. S. & Chase, G. A. Should echocardiography be performed to assess effects of antihypertensive therapy? Test-retest reliability of echocardiography for measurement of left ventricular mass and function. J. Am. Coll. Cardiol. 25, 424–430 (1995).

    CAS  PubMed  Google Scholar 

  115. Myerson, S. G., Bellenger, N. G. & Pennell, D. J. Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39, 750–755 (2002).

    CAS  PubMed  Google Scholar 

  116. Dickstein, K. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. Heart J. 29, 2388–2442 (2008).

    CAS  PubMed  Google Scholar 

  117. Grothues, F. et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am. J. Cardiol. 90, 29–34 (2002).

    PubMed  Google Scholar 

  118. Bellenger, N. G., Davies, L. C., Francis, J. M., Coats, A. J. & Pennell, D. J. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2, 271–278 (2000).

    CAS  PubMed  Google Scholar 

  119. Kannel, W. B., Gordon, T., Castelli, W. P. & Margolis, J. R. Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease. The Framingham study. Ann. Intern. Med. 72, 813–822 (1970).

    CAS  PubMed  Google Scholar 

  120. Devereux, R. B. & Reichek, N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55, 613–618 (1977).

    CAS  PubMed  Google Scholar 

  121. Jain, A. et al. Diagnostic and prognostic utility of electrocardiography for left ventricular hypertrophy defined by magnetic resonance imaging in relationship to ethnicity: the Multi-Ethnic Study of Atherosclerosis (MESA). Am. Heart J. 159, 652–658 (2010).

    PubMed  PubMed Central  Google Scholar 

  122. Kannel, W. B. & Cobb, J. Left ventricular hypertrophy and mortality—results from the Framingham Study. Cardiology 81, 291–298 (1992).

    CAS  PubMed  Google Scholar 

  123. Carr, A. A., Prisant, L. M. & Watkins, L. O. Detection of hypertensive left ventricular hypertrophy. Hypertension 7, 948–954 (1985).

    CAS  PubMed  Google Scholar 

  124. Nasir, K. et al. Comparison of left ventricular size by computed tomography with magnetic resonance imaging measures of left ventricle mass and volumes: the multi-ethnic study of atherosclerosis. J. Cardiovasc. Comput. Tomogr. 2, 141–148 (2008).

    PubMed  Google Scholar 

  125. Sigurdsson, G. CT for assessing ventricular remodeling: is it ready for prime time? Curr. Heart Fail. Rep. 5, 16–22 (2008).

    PubMed  Google Scholar 

  126. Redfield, M. M. et al. Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: a community-based study. Circulation 109, 3176–3181 (2004).

    CAS  PubMed  Google Scholar 

  127. Vasan, R. S. et al. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham heart study. JAMA 288, 1252–1259 (2002).

    CAS  PubMed  Google Scholar 

  128. Lee, D. S., Wang, T. J. & Ramachandran, V. S. Screening for Ventricular Remodeling. Curr. Heart Fail. Rep. 3, 5–13 (2006).

    PubMed  Google Scholar 

  129. Prasad, S. K. et al. Comparison of the dual receptor endothelin antagonist enrasentan with enalapril in asymptomatic left ventricular systolic dysfunction: a cardiovascular magnetic resonance study. Heart 92, 798–803 (2006).

    CAS  PubMed  Google Scholar 

  130. Devereux, R. B. et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 292, 2350–2356 (2004).

    CAS  PubMed  Google Scholar 

  131. Verdecchia, P. et al. Does the reduction in systolic blood pressure alone explain the regression of left ventricular hypertrophy? J. Hum. Hypertens. 18 (Suppl. 2), S23–S28 (2004).

    PubMed  Google Scholar 

  132. Chung, E. S. et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008).

    PubMed  Google Scholar 

  133. Merlo, M. et al. Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J. Am. Coll. Cardiol. 57, 1468–1476 (2011).

    PubMed  Google Scholar 

  134. Burkhoff, D., Klotz, S. & Mancini, D. M. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J. Card. Fail. 12, 227–239 (2006).

    PubMed  Google Scholar 

  135. Krayenbuehl, H. P. et al. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79, 744–755 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O. Gjesdal researched data for the article. All authors contributed substantially to the discussion of content, and reviewed and edited the manuscript before submission

Corresponding author

Correspondence to Joao A. Lima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjesdal, O., Bluemke, D. & Lima, J. Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol 8, 673–685 (2011). https://doi.org/10.1038/nrcardio.2011.154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing