Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stenting of complex lesions: an overview

Abstract

Contemporary management of coronary artery disease relies increasingly on percutaneous techniques combined with medical therapy. Although percutaneous coronary intervention (PCI) can be performed successfully in most lesions, several difficult lesion subsets continue to present unique technical challenges. These complex lesions may be classified according to anatomic criteria, including extensive calcification, thrombus, and chronic occlusions, or by location, such as bifurcations, saphenous vein grafts and unprotected left main. PCI of these lesions often requires novel devices, such as drug-eluting stents, hydrophilic guidewires, distal protection balloons or filters, thrombectomy catheters, rotational atherectomy, and cutting balloons. An integrated approach that combines these devices with specialized techniques and adjunctive pharmacologic agents has greatly improved PCI success rates for these complex lesions.

Key Points

  • Percutaneous coronary intervention, combined with optimal medical therapy, is currently a safe, effective and reliable treatment option for millions of patients with coronary artery disease (CAD)

  • Substantial advances in interventional equipment, novel techniques and adjunctive devices have greatly expanded the scope of percutaneous coronary intervention to include many complex coronary lesion subsets

  • The percutaneous treatment of several types of coronary lesions remains challenging and is associated with increased risk of adverse outcomes

  • Multiple large-scale registries and subgroup analyses of randomized studies have shown similar outcomes following percutaneous or surgical revascularization of unprotected left main disease

  • Incorporating angiographic parameters of CAD severity, the SYNTAX score can be used to risk-stratify and identify the optimal revascularization approach for patients with complex CAD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-stent approaches to bifurcation lesions.
Figure 2: Suggested approach for large bifurcation lesions on the basis of the size, angulation, and obstruction of the side branch.
Figure 3: Methods that facilitate wire crossing of a CTO.
Figure 4: Event rates in studies comparing CABG surgery and PCI in ULMCA disease.
Figure 5: For thrombotic lesions, EPDs can used to capture embolic debris before or after PCI.
Figure 6: Outcomes with adjunctive embolic protection devices for ST-segment elevation myocardial infarction in native vessels.

Similar content being viewed by others

References

  1. Hochman, J. S. et al. Coronary intervention for persistent occlusion after myocardial infarction. N. Engl. J. Med. 355, 2395–2407 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shaw, L. J. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117, 1283–1291 (2008).

    Article  PubMed  Google Scholar 

  3. Keeley, E. C., Boura, J. A. & Grines, C. L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361, 13–20 (2003).

    Article  PubMed  Google Scholar 

  4. Seung, K. B. et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N. Engl. J. Med. 358, 1781–1792 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Wilensky, R. L. et al. Relation of percutaneous coronary intervention of complex lesions to clinical outcomes (from the NHLBI Dynamic Registry). Am. J. Cardiol. 90, 216–221 (2002).

    Article  PubMed  Google Scholar 

  6. Meier, B. et al. Risk of side branch occlusion during coronary angioplasty. Am. J. Cardiol. 53, 10–14 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Al Suwaidi, J. et al. Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. J. Am. Coll. Cardiol. 35, 929–936 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Pan, M. et al. Simple and complex stent strategies for bifurcated coronary arterial stenosis involving the side branch origin. Am. J. Cardiol. 83, 1320–1325 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Sheiban, I. et al. Immediate and long-term results of “T” stenting for bifurcation coronary lesions. Am. J. Cardiol. 85, 1141–1144, A9 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Iakovou, I. et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293, 2126–2130 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Medina, A., Suarez de Lezo, J. & Pan, M. A new classification of coronary bifurcation lesions [Spanish]. Rev. Esp. Cardiol. 59, 183 (2006).

    Article  PubMed  Google Scholar 

  12. Legrand, V. et al. Percutaneous coronary intervention of bifurcation lesions: state-of-the-art. Insights from the second meeting of the European Bifurcation Club. EuroIntervention 3, 44–49 (2007).

    PubMed  Google Scholar 

  13. Lefevre, T. et al. Stenting of bifurcation lesions: a rational approach. J. Interv. Cardiol. 14, 573–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Teirstein, P. S. Kissing Palmaz-Schatz stents for coronary bifurcation stenoses. Cathet. Cardiovasc. Diagn. 37, 307–310 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Steigen, T. K. et al. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation 114, 1955–1961 (2006).

    Article  PubMed  Google Scholar 

  16. Chevalier, B., Glatt, B., Royer, T. & Guyon, P. Placement of coronary stents in bifurcation lesions by the “culotte” technique. Am. J. Cardiol. 82, 943–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Colombo, A. et al. Modified T-stenting technique with crushing for bifurcation lesions: immediate results and 30-day outcome. Catheter Cardiovasc. Interv. 60, 145–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, S. K. et al. Simultaneous kissing stents (SKS) technique for treating bifurcation lesions in medium-to-large size coronary arteries. Am. J. Cardiol. 94, 913–917 (2004).

    Article  PubMed  Google Scholar 

  19. Zhang, F., Dong, L. & Ge, J. Simple versus complex stenting strategy for coronary artery bifurcation lesions in the drug-eluting stent era: a meta-analysis of randomised trials. Heart 95, 1676–1681 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Colombo, A. et al. Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study. Circulation 119, 71–78 (2009).

    Article  PubMed  Google Scholar 

  21. Hildick-Smith, D. et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies. Circulation 121, 1235–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Kawaguchi, R. et al. Impact of lesion calcification on clinical and angiographic outcome after sirolimus-eluting stent implantation in real-world patients. Cardiovasc. Revasc. Med. 9, 2–8 (2008).

    Article  PubMed  Google Scholar 

  23. Moussa, I. et al. Impact of coronary culprit lesion calcium in patients undergoing paclitaxel-eluting stent implantation (a TAXUS-IV sub study). Am. J. Cardiol. 96, 1242–1247 (2005).

    Article  PubMed  Google Scholar 

  24. Hoffmann, R. et al. Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study. Eur. Heart J. 19, 1224–1231 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Fourrier, J. L. et al. Percutaneous coronary rotational angioplasty in humans: preliminary report. J. Am. Coll. Cardiol. 14, 1278–1282 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Tran, T., Brown, M. & Lasala, J. An evidence-based approach to the use of rotational and directional coronary atherectomy in the era of drug-eluting stents: when does it make sense? Catheter Cardiovasc. Interv. 72, 650–662 (2008).

    Article  PubMed  Google Scholar 

  27. Ahn, S. S., Auth, D., Marcus, D. R. & Moore, W. S. Removal of focal atheromatous lesions by angioscopically guided high-speed rotary atherectomy. Preliminary experimental observations. J. Vasc. Surg. 7, 292–300 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Dill, T. et al. A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study). Eur. Heart J. 21, 1759–1766 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Guerin, Y. et al. Rotational atherectomy with adjunctive balloon angioplasty versus conventional percutaneous transluminal coronary angioplasty in type B2 lesions: results of a randomized study. Am. Heart J. 131, 879–883 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Clavijo, L. C. et al. Sirolimus-eluting stents and calcified coronary lesions: clinical outcomes of patients treated with and without rotational atherectomy. Catheter Cardiovasc. Interv. 68, 873–878 (2006).

    Article  PubMed  Google Scholar 

  31. Barath, P., Fishbein, M. C., Vari, S. & Forrester, J. S. Cutting balloon: a novel approach to percutaneous angioplasty. Am. J. Cardiol. 68, 1249–1252 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Okura, H. et al. Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: an intravascular ultrasound study. Catheter Cardiovasc. Interv. 57, 429–436 (2002).

    Article  PubMed  Google Scholar 

  33. Brown, R., Kochar, G., Maniet, A. R. & Banka, V. S. Effects of coronary angioplasty using progressive dilation on ostial stenosis of the left anterior descending artery. Am. J. Cardiol. 71, 245–247 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Inoue, T. et al. Lower expression of neutrophil adhesion molecule indicates less vessel wall injury and might explain lower restenosis rate after cutting balloon angioplasty. Circulation 97, 2511–2518 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Stone, G. W. et al. Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part I. Circulation 112, 2364–2372 (2005).

    Article  PubMed  Google Scholar 

  36. Kahn, J. K. Angiographic suitability for catheter revascularization of total coronary occlusions in patients from a community hospital setting. Am. Heart J. 126, 561–564 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Katsuragawa, M., Fujiwara, H., Miyamae, M. & Sasayama, S. Histologic studies in percutaneous transluminal coronary angioplasty for chronic total occlusion: comparison of tapering and abrupt types of occlusion and short and long occluded segments. J. Am. Coll. Cardiol. 21, 604–611 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. King, S. B. 3rd et al. A randomized trial comparing coronary angioplasty with coronary bypass surgery. Emory Angioplasty versus Surgery Trial (EAST). N. Engl. J. Med. 331, 1044–1050 (1994).

    Article  PubMed  Google Scholar 

  39. Anderson, H. V. et al. A contemporary overview of percutaneous coronary interventions. The American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR). J. Am. Coll. Cardiol. 39, 1096–1103 (2002).

    Article  PubMed  Google Scholar 

  40. Hoye, A., van Domburg, R. T., Sonnenschein, K. & Serruys, P. W. Percutaneous coronary intervention for chronic total occlusions: the Thoraxcenter experience 1992–2002. Eur. Heart J. 26, 2630–2636 (2005).

    Article  PubMed  Google Scholar 

  41. Olivari, Z. et al. Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). J. Am. Coll. Cardiol. 41, 1672–1678 (2003).

    Article  PubMed  Google Scholar 

  42. Horie, H. et al. Long-term beneficial effect of late reperfusion for acute anterior myocardial infarction with percutaneous transluminal coronary angioplasty. Circulation 98, 2377–2382 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Silva, J. C. et al. Late coronary artery recanalization effects on left ventricular remodelling and contractility by magnetic resonance imaging. Eur. Heart J. 26, 36–43 (2005).

    Article  PubMed  Google Scholar 

  44. Valenti, R. et al. Impact of complete revascularization with percutaneous coronary intervention on survival in patients with at least one chronic total occlusion. Eur. Heart J. 29, 2336–2342 (2008).

    Article  PubMed  Google Scholar 

  45. de Labriolle, A. et al. Comparison of safety, efficacy, and outcome of successful versus unsuccessful percutaneous coronary intervention in “true” chronic total occlusions. Am. J. Cardiol. 102, 1175–1181 (2008).

    Article  PubMed  Google Scholar 

  46. Stone, G. W. et al. Percutaneous recanalization of chronically occluded coronary arteries: procedural techniques, devices, and results. Catheter Cardiovasc. Interv. 66, 217–236 (2005).

    Article  PubMed  Google Scholar 

  47. Baim, D. S. et al. Utility of the Safe-Cross-guided radiofrequency total occlusion crossing system in chronic coronary total occlusions (results from the Guided Radio Frequency Energy Ablation of Total Occlusions Registry Study). Am. J. Cardiol. 94, 853–858 (2004).

    Article  PubMed  Google Scholar 

  48. Grube, E. et al. High-frequency mechanical vibration to recanalize chronic total occlusions after failure to cross with conventional guidewires. J. Invasive Cardiol. 18, 85–91 (2006).

    PubMed  Google Scholar 

  49. Melzi, G. et al. A novel approach to chronic total occlusions: the crosser system. Catheter Cardiovasc. Interv. 68, 29–35 (2006).

    Article  PubMed  Google Scholar 

  50. Weisz, G. & Moses, J. W. New percutaneous approaches for chronic total occlusion of coronary arteries. Expert Rev. Cardiovasc. Ther. 5, 231–241 (2007).

    Article  PubMed  Google Scholar 

  51. Saito, S. Different strategies of retrograde approach in coronary angioplasty for chronic total occlusion. Catheter Cardiovasc. Interv. 71, 8–19 (2008).

    Article  PubMed  Google Scholar 

  52. Sheiban, I. et al. The retrograde coronary approach for chronic total occlusions: mid-term results and technical tips & tricks. J. Interv. Cardiol. 20, 466–473 (2007).

    Article  PubMed  Google Scholar 

  53. Rathore, S. et al. Retrograde percutaneous recanalization of chronic total occlusion of the coronary arteries: procedural outcomes and predictors of success in contemporary practice. Circ. Cardiovasc. Interv. 2, 124–132 (2009).

    Article  PubMed  Google Scholar 

  54. Migliorini, A. et al. Drug-eluting stent-supported percutaneous coronary intervention for chronic total coronary occlusion. Catheter Cardiovasc. Interv. 67, 344–348 (2006).

    Article  PubMed  Google Scholar 

  55. Ge, L. et al. Immediate and mid-term outcomes of sirolimus-eluting stent implantation for chronic total occlusions. Eur. Heart J. 26, 1056–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Chaitman, B. R. et al. Angiographic prevalence of high-risk coronary artery disease in patient subsets (CASS). Circulation 64, 360–367 (1981).

    Article  CAS  PubMed  Google Scholar 

  57. Campeau, L., Corbara, F., Crochet, D. & Petitclerc, R. Left main coronary artery stenosis: the influence of aortocoronary bypass surgery on survival. Circulation 57, 1111–1115 (1978).

    Article  CAS  PubMed  Google Scholar 

  58. Takaro, T., Hultgren, H. N., Lipton, M. J. & Detre, K. M. The VA cooperative randomized study of surgery for coronary arterial occlusive disease II. Subgroup with significant left main lesions. Circulation 54, III107–III117 (1976).

    CAS  PubMed  Google Scholar 

  59. Kushner, F. G. et al. 2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (updating the 2005 Guideline and 2007 Focused Update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 120, 2271–2306 (2009).

    Article  PubMed  Google Scholar 

  60. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Palmerini, T. et al. Ostial and midshaft lesions vs. bifurcation lesions in 1111 patients with unprotected left main coronary artery stenosis treated with drug-eluting stents: results of the survey from the Italian Society of Invasive Cardiology. Eur. Heart J. 30, 2087–2094 (2009).

    Article  PubMed  Google Scholar 

  62. Chieffo, A. et al. Percutaneous treatment with drug-eluting stent implantation versus bypass surgery for unprotected left main stenosis: a single-center experience. Circulation 113, 2542–2547 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Buszman, P. E. et al. Acute and late outcomes of unprotected left main stenting in comparison with surgical revascularization. J. Am. Coll. Cardiol. 51, 538–545 (2008).

    Article  PubMed  Google Scholar 

  64. Lee, M. S. et al. Comparison of coronary artery bypass surgery with percutaneous coronary intervention with drug-eluting stents for unprotected left main coronary artery disease. J. Am. Coll. Cardiol. 47, 864–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Kereiakes, D. J. & Faxon, D. P. Left main coronary revascularization at the crossroads. Circulation 113, 2480–2484 (2006).

    Article  PubMed  Google Scholar 

  66. Park, S. J. et al. Duration of dual antiplatelet therapy after implantation of drug-eluting stents. N. Engl. J. Med. 362, 1374–1382 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Park, S. J. et al. Elective stenting of unprotected left main coronary artery stenosis: effect of debulking before stenting and intravascular ultrasound guidance. J. Am. Coll. Cardiol. 38, 1054–1060 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ito, H. et al. Clinical implications of the 'no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93, 223–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Stone, G. W. et al. Impact of normalized myocardial perfusion after successful angioplasty in acute myocardial infarction. J. Am. Coll. Cardiol. 39, 591–597 (2002).

    Article  PubMed  Google Scholar 

  70. Topol, E. J. & Yadav, J. S. Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 101, 570–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Henriques, J. P. et al. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur. Heart J. 23, 1112–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Ross, A. M., Gibbons, R. J., Stone, G. W., Kloner, R. A. & Alexander, R. W. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J. Am. Coll. Cardiol. 45, 1775–1780 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Amit, G. et al. Intracoronary nitroprusside for the prevention of the no-reflow phenomenon after primary percutaneous coronary intervention in acute myocardial infarction. A randomized, double-blind, placebo-controlled clinical trial. Am. Heart J. 152, 887.e9–887.e14 (2006).

    Article  CAS  Google Scholar 

  74. Hillegass, W. B., Dean, N. A., Liao, L., Rhinehart, R. G. & Myers, P. R. Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J. Am. Coll. Cardiol. 37, 1335–1343 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Hang, C. L. et al. Early administration of intracoronary verapamil improves myocardial perfusion during percutaneous coronary interventions for acute myocardial infarction. Chest 128, 2593–2598 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Gick, M. et al. Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation. Circulation 112, 1462–1469 (2005).

    Article  PubMed  Google Scholar 

  77. Stone, G. W. et al. Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: a randomized controlled trial. JAMA 293, 1063–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. De Luca, G. et al. Adjunctive mechanical devices to prevent distal embolization in patients undergoing mechanical revascularization for acute myocardial infarction: a meta-analysis of randomized trials. Am. Heart J. 153, 343–353 (2007).

    Article  PubMed  Google Scholar 

  79. Bavry, A. A., Kumbhani, D. J. & Bhatt, D. L. Role of adjunctive thrombectomy and embolic protection devices in acute myocardial infarction: a comprehensive meta-analysis of randomized trials. Eur. Heart J. 29, 2989–3001 (2008).

    Article  PubMed  Google Scholar 

  80. Svilaas, T. et al. Thrombus aspiration during primary percutaneous coronary intervention. N. Engl. J. Med. 358, 557–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Kaltoft, A. et al. Routine thrombectomy in percutaneous coronary intervention for acute ST-segment-elevation myocardial infarction: a randomized, controlled trial. Circulation 114, 40–47 (2006).

    Article  PubMed  Google Scholar 

  82. Silva-Orrego, P. et al. Thrombus aspiration before primary angioplasty improves myocardial reperfusion in acute myocardial infarction: the DEAR-MI (Dethrombosis to Enhance Acute Reperfusion in Myocardial Infarction) study. J. Am. Coll. Cardiol. 48, 1552–1559 (2006).

    Article  PubMed  Google Scholar 

  83. Babaev, A. et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 294, 448–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Sjauw, K. D. et al. A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur. Heart J. 30, 459–468 (2009).

    Article  PubMed  Google Scholar 

  85. Abdel-Wahab, M. et al. Comparison of hospital mortality with intra-aortic balloon counterpulsation insertion before versus after primary percutaneous coronary intervention for cardiogenic shock complicating acute myocardial infarction. Am. J. Cardiol. 105, 967–971 (2010).

    Article  PubMed  Google Scholar 

  86. Sjauw, K. D. et al. Left ventricular unloading in acute ST-segment elevation myocardial infarction patients is safe and feasible and provides acute and sustained left ventricular recovery. J. Am. Coll. Cardiol. 51, 1044–1046 (2008).

    Article  PubMed  Google Scholar 

  87. Thiele, H. et al. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation 104, 2917–2922 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Seyfarth, M. et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J. Am. Coll. Cardiol. 52, 1584–1588 (2008).

    Article  PubMed  Google Scholar 

  89. Motwani, J. G. & Topol, E. J. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97, 916–931 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Cameron, A., Davis, K. B., Green, G. & Schaff, H. V. Coronary bypass surgery with internal-thoracic-artery grafts—effects on survival over a 15-year period. N. Engl. J. Med. 334, 216–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Campeau, L. et al. The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. A study 10 years after aortocoronary bypass surgery. N. Engl. J. Med. 311, 1329–1332 (1984).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, L. et al. Angiographic features of vein grafts versus ungrafted coronary arteries in patients with unstable angina and previous bypass surgery. J. Am. Coll. Cardiol. 28, 1493–1499 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Douglas, J. S. Jr. Percutaneous approaches to recurrent myocardial ischemia in patients with prior surgical revascularization. Semin. Thorac. Cardiovasc. Surg. 6, 98–108 (1994).

    PubMed  Google Scholar 

  94. Cameron, A., Kemp, H. G. Jr & Green, G. E. Reoperation for coronary artery disease. 10 years of clinical follow-up. Circulation 78, I158–I162 (1988).

    CAS  PubMed  Google Scholar 

  95. Bhatt, D. L. & Topol, E. J. Percutaneous coronary intervention for patients with prior bypass surgery: therapy in evolution. Am. J. Med. 108, 176–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Hong, M. K. et al. Creatine kinase-MB enzyme elevation following successful saphenous vein graft intervention is associated with late mortality. Circulation 100, 2400–2405 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Le May, M. R. et al. Predictors of long-term outcome after stent implantation in a saphenous vein graft. Am. J. Cardiol. 83, 681–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Mautner, S. L. Mautner, G. C. Hunsberger, S. A. & Roberts, W. C. Comparison of composition of atherosclerotic plaques in saphenous veins used as aortocoronary bypass conduits with plaques in native coronary arteries in the same men. Am. J. Cardiol. 70, 1380–1387 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Webb, J. G. et al. Retrieval and analysis of particulate debris after saphenous vein graft intervention. J. Am. Coll. Cardiol. 34, 468–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Roffi, M. et al. Lack of benefit from intravenous platelet glycoprotein IIb/IIIa receptor inhibition as adjunctive treatment for percutaneous interventions of aortocoronary bypass grafts: a pooled analysis of five randomized clinical trials. Circulation 106, 3063–3067 (2002).

    Article  PubMed  Google Scholar 

  101. Baim, D. S. et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 105, 1285–1290 (2002).

    Article  PubMed  Google Scholar 

  102. Stone, G. W. et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aorto-coronary bypass grafts. Circulation 108, 548–553 (2003).

    Article  PubMed  Google Scholar 

  103. Smith, S. C. Jr et al. ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention-Summary Article: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J. Am. Coll. Cardiol. 47, 216–235 (2006).

    Article  PubMed  Google Scholar 

  104. Hanekamp, C. E. et al. Randomized study to compare balloon angioplasty and elective stent implantation in venous bypass grafts: the Venestent study. Catheter Cardiovasc. Interv. 60, 452–457 (2003).

    Article  PubMed  Google Scholar 

  105. Savage, M. P. et al. Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. Saphenous Vein De Novo Trial Investigators. N. Engl. J. Med. 337, 740–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Brilakis, E. S. et al. A randomized controlled trial of a paclitaxel-eluting stent versus a similar bare-metal stent in saphenous vein graft lesions the SOS (Stenting of Saphenous Vein Grafts) trial. J. Am. Coll. Cardiol. 53, 919–928 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Vermeersch, P. et al. Randomized double-blind comparison of sirolimus-eluting stent versus bare-metal stent implantation in diseased saphenous vein grafts: six-month angiographic, intravascular ultrasound, and clinical follow-up of the RRISC Trial. J. Am. Coll. Cardiol. 48, 2423–2431 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Vermeersch, P. et al. Increased late mortality after sirolimus-eluting stents versus bare-metal stents in diseased saphenous vein grafts: results from the randomized DELAYED RRISC Trial. J. Am. Coll. Cardiol. 50, 261–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Daemen, J. et al. Long-term safety and efficacy of percutaneous coronary intervention with stenting and coronary artery bypass surgery for multivessel coronary artery disease: a meta-analysis with 5-year patient-level data from the ARTS, ERACI-II, MASS-II, and SoS trials. Circulation 118, 1146–1154 (2008).

    Article  PubMed  Google Scholar 

  110. Sianos, G. et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1, 219–227 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

Laurie Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

U. Baber researched data to include in the manuscript. A. Kini and S. Sharma contributed to discussion of content for the article. U. Baber and A. Kini wrote the first draft of the article. S. Sharma reviewed and edited the manuscript before submission. U. Baber and S. Sharma revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Samin K. Sharma.

Ethics declarations

Competing interests

The journal Chief Editor B. Mearns and the CME questions author L. Barclay declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baber, U., Kini, A. & Sharma, S. Stenting of complex lesions: an overview. Nat Rev Cardiol 7, 485–496 (2010). https://doi.org/10.1038/nrcardio.2010.116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing