Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contemporary coronary artery bypass graft surgery and subsequent percutaneous revascularization

Abstract

Patients who have undergone coronary artery bypass graft (CABG) surgery are susceptible to bypass graft failure and progression of native coronary artery disease. Although the saphenous vein graft (SVG) was traditionally the most-used conduit, arterial grafts (including the left and right internal thoracic arteries and the radial artery) have improved patency rates. However, the need for secondary revascularization remains common, and percutaneous coronary intervention (PCI) has become the most common modality of secondary revascularization after CABG surgery. Procedural characteristics and clinical outcomes differ considerably from those associated with PCI in patients without previous CABG surgery, owing to altered coronary anatomy and differences in conduit pathophysiology. In particular, SVG PCI carries an increased risk of complications, and operators are shifting their focus towards embolic protection strategies and complex native-vessel interventions, increasingly using SVGs as conduits to facilitate native-vessel PCI rather than pursuing SVG PCI. In this Review, we discuss the differences in conduit pathophysiology, changes in CABG surgery techniques, and the latest evidence in terms of PCI in patients with previous CABG surgery, with a particular emphasis on safety and long-term efficacy. We explore the subject of contemporary CABG surgery and subsequent percutaneous revascularization in this complex patient population.

Key points

  • Coronary artery bypass graft (CABG) surgery has evolved over the years because saphenous vein graft harvesting techniques and expanded use of arterial grafts have improved graft patency.

  • Peri-operative graft failure is a rare complication that can be difficult to recognize during CABG surgery.

  • Venous and arterial grafts vary in pathophysiology, which leads to differences in graft failure modes and relevant considerations in percutaneous coronary revascularization techniques.

  • The need for subsequent revascularization after CABG surgery might occur; the choice of revascularization method depends on patient anatomy and characteristics, with percutaneous coronary intervention being the main treatment modality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common pathophysiology in SVG conduits after coronary artery bypass graft surgery.
Fig. 2: Intervention modalities in patients who have undergone CABG surgery.
Fig. 3: SVG PCI and potential complications.

Similar content being viewed by others

References

  1. Alexander, J. H. & Smith, P. K. Coronary-artery bypass grafting. N. Eng. J. Med. 374, 1954–1964 (2016).

    Article  CAS  Google Scholar 

  2. Brilakis, E. S. et al. Percutaneous coronary intervention in native arteries versus bypass grafts in prior coronary artery bypass grafting patients: a report from the National Cardiovascular Data Registry. JACC Cardiovasc. Interv. 4, 844–850 (2011).

    Article  PubMed  Google Scholar 

  3. Hlatky, M. A. et al. Adoption and effectiveness of internal mammary artery grafting in coronary artery bypass surgery among Medicare beneficiaries. J. Am. Coll. Cardiol. 63, 33–39 (2014).

    Article  PubMed  Google Scholar 

  4. Hillis, L. D. et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 58, e123–e210 (2011).

    Article  PubMed  Google Scholar 

  5. Neumann, F.-J. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2018).

    Article  Google Scholar 

  6. Lopes, R. D. et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. N. Eng. J. Med. 361, 235–244 (2009).

    Article  CAS  Google Scholar 

  7. Sastry, P. et al. The influence of endoscopic vein harvesting on outcomes after coronary bypass grafting: a meta-analysis of 267 525 patients. Eur. J. Cardiothorac. Surg. 44, 980–989 (2013).

    Article  PubMed  Google Scholar 

  8. Zenati, M. A. et al. Randomized trial of endoscopic or open vein-graft harvesting for coronary-artery bypass. N. Eng. J. Med. 380, 132–141 (2018).

    Article  Google Scholar 

  9. Souza, D. S. et al. Harvesting the saphenous vein with surrounding tissue for CABG provides long-term graft patency comparable to the left internal thoracic artery: results of a randomized longitudinal trial. J. Thorac. Cardiovasc. Surg. 132, 373–378 (2006).

    Article  PubMed  Google Scholar 

  10. Deb, S. et al. SUPERIOR SVG: no touch saphenous harvesting to improve patency following coronary bypass grafting (a multi-centre randomized control trial, NCT01047449). J. Cardiothorac. Surg. 14, 85 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gaudino, M. et al. Mechanisms, consequences, and prevention of coronary graft failure. Circulation 136, 1749–1764 (2017).

    Article  PubMed  Google Scholar 

  12. Gaudino, M. et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N. Engl. J. Med. 378, 2069–2077 (2018).

    Article  PubMed  Google Scholar 

  13. Gaudino, M. et al. The radial artery for percutaneous coronary procedures or surgery? J. Am. Coll. Cardiol. 71, 1167–1175 (2018).

    Article  PubMed  Google Scholar 

  14. Mounsey, C. A., Mawhinney, J. A., Werner, R. S. & Taggart, D. P. Does previous transradial catheterization preclude use of the radial artery as a conduit in coronary artery bypass surgery? Circulation 134, 681–688 (2016).

    Article  PubMed  Google Scholar 

  15. Ruzieh, M., Moza, A., Bangalore, B. S., Schwann, T. & Tinkel, J. L. Effect of transradial catheterisation on patency rates of radial arteries used as a conduit for coronary bypass. Heart Lung Circ. 26, 296–300 (2017).

    Article  PubMed  Google Scholar 

  16. Maniar, H. S. et al. Effect of target stenosis and location on radial artery graft patency. J. Thorac. Cardiovasc. Surg. 123, 45–52 (2002).

    Article  PubMed  Google Scholar 

  17. Desai Nimesh, D. et al. Impact of patient and target-vessel characteristics on arterial and venous bypass graft patency. Circulation 115, 684–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Leonard, J. R. et al. The radial artery: results and technical considerations. J. Card. Surg. 33, 213–218 (2018).

    Article  PubMed  Google Scholar 

  19. Patel, A. N. et al. Endoscopic radial artery harvesting is better than the open technique. Ann. Thorac. Surg. 78, 149–153 (2004).

    Article  PubMed  Google Scholar 

  20. Taggart, D. P. et al. Bilateral versus single internal-thoracic-artery grafts at 10 years. N. Engl. J. Med. 380, 437–446 (2019).

    Article  PubMed  Google Scholar 

  21. Yi, G., Shine, B., Rehman, S. M., Altman, D. G. & Taggart, D. P. Effect of bilateral internal mammary artery grafts on long-term survival: a meta-analysis approach. Circulation 130, 539–545 (2014).

    Article  PubMed  Google Scholar 

  22. Kurlansky, P. A. et al. Location of the second internal mammary artery graft does not influence outcome of coronary artery bypass grafting. Ann. Thorac. Surg. 91, 1378–1383 (2011).

    Article  PubMed  Google Scholar 

  23. Sabik Joseph, F. et al. Does location of the second internal thoracic artery graft influence outcome of coronary artery bypass grafting? Circulation 118, S210–S215 (2008).

    PubMed  Google Scholar 

  24. Tatoulis, J., Buxton, B. F. & Fuller, J. A. The right internal thoracic artery: is it underutilized? Curr. Opin. Cardiol. 26, 528–535 (2011).

    Article  PubMed  Google Scholar 

  25. Tatoulis, J., Buxton, B. F. & Fuller, J. A. The right internal thoracic artery: the forgotten conduit — 5,766 patients and 991 angiograms. Ann. Thorac. Surg. 92, 9–15 (2011).

    Article  PubMed  Google Scholar 

  26. Glineur, D. et al. Bilateral internal thoracic artery configuration for coronary artery bypass surgery: a prospective randomized trial. Circ. Cardiovasc. Interv. 9, e003518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gaudino, M. et al. Radial artery versus right internal thoracic artery versus saphenous vein as the second conduit for coronary artery bypass surgery: a network meta-analysis of clinical outcomes. J. Am. Heart Assoc. 8, e010839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rocha, R. V. et al. Multiple arterial grafting is associated with better outcomes for coronary artery bypass grafting patients. Circulation 138, 2081–2090 (2018).

    Article  PubMed  Google Scholar 

  29. Gaudino, M. et al. Three arterial grafts improve late survival: a meta-analysis of propensity-matched studies. Circulation 135, 1036–1044 (2017).

    Article  PubMed  Google Scholar 

  30. Rocha, R. V. et al. Long-term outcomes associated with total arterial revascularization vs non-total arterial revascularization. JAMA Cardiol. 5, 507–514 (2020).

    Article  PubMed  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03217006 (2021).

  32. McKavanagh, P., Yanagawa, B., Zawadowski, G. & Cheema, A. Management and prevention of saphenous vein graft failure: a review. Cardiol. Ther. 6, 203–223 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thielmann, M. et al. Emergency re-revascularization with percutaneous coronary intervention, reoperation, or conservative treatment in patients with acute perioperative graft failure following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 30, 117–125 (2006).

    Article  PubMed  Google Scholar 

  34. Zhao, D. X. et al. Routine intraoperative completion angiography after coronary artery bypass grafting and 1-stop hybrid revascularization results from a fully integrated hybrid catheterization laboratory/operating room. J. Am. Coll. Cardiol. 53, 232–241 (2009).

    Article  PubMed  Google Scholar 

  35. Harskamp, R. E., Lopes, R. D., Baisden, C. E., de Winter, R. J. & Alexander, J. H. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann. Surg. 257, 824–833 (2013).

    Article  PubMed  Google Scholar 

  36. Campbell, P. G. et al. Non-invasive assessment of saphenous vein graft patency in asymptomatic patients. Br. J. Radiol. 82, 291–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Gaudino, M. et al. Effect of calcium-channel blocker therapy on radial artery grafts after coronary bypass surgery. J. Am. Coll. Cardiol. 73, 2299–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Berger, A. et al. Long-term patency of internal mammary artery bypass grafts: relationship with preoperative severity of the native coronary artery stenosis. Circulation 110, Ii36–Ii40 (2004).

    Article  PubMed  Google Scholar 

  39. Harskamp, R. E. et al. Frequency and predictors of internal mammary artery graft failure and subsequent clinical outcomes: insights from the project of ex-vivo vein graft engineering via transfection (PREVENT) IV trial. Circulation 133, 131–138 (2016).

    Article  PubMed  Google Scholar 

  40. Shelton, M. E. et al. A comparison of morphologic and angiographic findings in long-term internal mammary artery and saphenous vein bypass grafts. J. Am. Coll. Cardiol. 11, 297–307 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Thielmann, M. et al. ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position Paper: Perioperative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. Eur. Heart J. 38, 2392–2407 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hausenloy, D. J., Boston-Griffiths, E. & Yellon, D. M. Cardioprotection during cardiac surgery. Cardiovasc. Res. 94, 253–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laflamme, M. et al. Management of early postoperative coronary artery bypass graft failure. Interact. Cardiovasc. Thorac. Surg. 14, 452–456 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alqahtani, F. et al. Incidence, predictors, and outcomes of in-hospital percutaneous coronary intervention following coronary artery bypass grafting. J. Am. Coll. Cardiol. 73, 415–423 (2019).

    Article  PubMed  Google Scholar 

  45. Sef, D. et al. Management of perioperative myocardial ischaemia after isolated coronary artery bypass graft surgery. Open Heart 6, e001027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chiesi. Cangrelor (KENGREAL®). Prescribing Information (Chiesi Ltd, 2016).

  47. Anderson, J. R. & Riding, D. Glycoprotein IIb/IIIa inhibitors in patients with renal insufficiency undergoing percutaneous coronary intervention. Cardiol. Rev. 16, 213–218 (2008).

    Article  PubMed  Google Scholar 

  48. Rodés-Cabau, J. et al. Sealing intermediate nonobstructive coronary saphenous vein graft lesions with drug-eluting stents as a new approach to reducing cardiac events. Circ. Cardiovasc. Interv. 9, e004336 (2016).

    Article  PubMed  Google Scholar 

  49. Hlatky, M. A. et al. Use of medications for secondary prevention after coronary bypass surgery compared with percutaneous coronary intervention. J. Am. Coll. Cardiol. 61, 295–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Pinho-Gomes, A. C. et al. Compliance with guideline-directed medical therapy in contemporary coronary revascularization trials. J. Am. Coll. Cardiol. 71, 591–602 (2018).

    Article  PubMed  Google Scholar 

  51. Kulik, A. et al. Secondary prevention after coronary artery bypass graft surgery: a scientific statement from the American Heart Association. Circulation 131, 927–964 (2015).

    Article  PubMed  Google Scholar 

  52. Escaned, J. Secondary revascularization after CABG surgery. Nat. Rev. Cardiol. 9, 540–549 (2012).

    Article  PubMed  Google Scholar 

  53. Dangas, G. D. et al. Impact of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump on prognostically important clinical outcomes in patients undergoing high-risk percutaneous coronary intervention (from the PROTECT II randomized trial). Am. J. Cardiol. 113, 222–228 (2014).

    Article  PubMed  Google Scholar 

  54. O’Neill, W. W. et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation 126, 1717–1727 (2012).

    Article  PubMed  Google Scholar 

  55. Tavano, D. et al. Percutaneous coronary intervention in patients with a single remaining vessel. Am. J. Cardiol. 99, 470–471 (2007).

    Article  PubMed  Google Scholar 

  56. Hess, C. N. et al. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation 130, 1445–1451 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fitzgibbon, G. M. et al. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J. Am. Coll. Cardiol. 28, 616–626 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Xenogiannis, I. et al. Update on cardiac catheterization in patients with prior coronary artery bypass graft surgery. JACC Cardiovasc. Interv. 12, 1635–1649 (2019).

    Article  PubMed  Google Scholar 

  59. Brilakis, E. S. et al. Percutaneous coronary intervention in native coronary arteries versus bypass grafts in patients with prior coronary artery bypass graft surgery: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. JACC Cardiovasc. Interv. 9, 884–893 (2016).

    Article  PubMed  Google Scholar 

  60. Rathod Krishnaraj, S. et al. Prior coronary artery bypass graft surgery and outcome after percutaneous coronary intervention: an observational study from the Pan-London percutaneous coronary intervention registry. J. Am. Heart Assoc. 9, e014409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmed, J. M. et al. Influence of gender on early and one-year clinical outcomes after saphenous vein graft stenting. Am. J. Cardiol. 87, 401–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Ahmed, J. M. et al. Influence of diabetes mellitus on early and late clinical outcomes in saphenous vein graft stenting. J. Am. Coll. Cardiol. 36, 1186–1193 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Coolong, A. et al. Saphenous vein graft stenting and major adverse cardiac events: a predictive model derived from a pooled analysis of 3958 patients. Circulation 117, 790–797 (2008).

    Article  PubMed  Google Scholar 

  64. Baim, D. S. et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 105, 1285–1290 (2002).

    Article  PubMed  Google Scholar 

  65. Shoaib, A. et al. Outcomes following percutaneous coronary intervention in saphenous vein grafts with and without embolic protection devices. JACC Cardiovasc. Interv. 12, 2286–2295 (2019).

    Article  PubMed  Google Scholar 

  66. Valle, J. A. et al. Contemporary use of embolic protection devices during saphenous vein graft intervention. Circ. Cardiovasc. Interv. 12, e007636 (2019).

    Article  PubMed  Google Scholar 

  67. Levine, G. N. et al. 2011 ACCF/AHA/SCAI Guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 124, e574–e651 (2011).

    PubMed  Google Scholar 

  68. Pereg, D. et al. Native coronary artery patency after coronary artery bypass surgery. JACC Cardiovasc. Interv. 7, 761–767 (2014).

    Article  PubMed  Google Scholar 

  69. Chirumamilla, A. P. et al. High platelet reactivity on clopidogrel therapy correlates with increased coronary atherosclerosis and calcification: a volumetric intravascular ultrasound study. JACC Cardiovasc. Imaging 5, 540–549 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nikolakopoulos, I. et al. Follow-up outcomes after chronic total occlusion percutaneous coronary intervention in patients with and without prior coronary artery bypass graft surgery: insights from the PROGRESS-CTO registry. J. Invasive Cardiol. 32, 315–320 (2020).

    PubMed  Google Scholar 

  71. Kirtane Ajay, J. et al. Treatment of higher-risk patients with an indication for revascularization. Circulation 134, 422–431 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Dautov, R., Manh Nguyen, C., Altisent, O., Gibrat, C. & Rinfret, S. Recanalization of chronic total occlusions in patients with previous coronary bypass surgery and consideration of retrograde access via saphenous vein grafts. Circ. Cardiovasc. Interv. 9, e003515 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Xenogiannis, I. et al. Retrograde chronic total occlusion percutaneous coronary intervention via saphenous vein graft. JACC Cardiovasc. Interv. 13, 517–526 (2020).

    Article  PubMed  Google Scholar 

  74. Tajti, P. et al. Retrograde CTO-PCI of native coronary arteries via left internal mammary artery grafts: insights from a multicenter U.S. Registry. J. Invasive Cardiol. 30, 89–96 (2018).

    PubMed  Google Scholar 

  75. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03805048 (2020).

  76. Januszek, R. A. et al. Predictors of periprocedural complications in patients undergoing percutaneous coronary interventions within coronary artery bypass grafts. Cardiol. J. 26, 633–644 (2019).

    Article  PubMed  Google Scholar 

  77. Rogers, J. H. & Calhoun, R. F. 2nd Diagnosis and management of subclavian artery stenosis prior to coronary artery bypass grafting in the current era. J. Card. Surg. 22, 20–25 (2007).

    Article  PubMed  Google Scholar 

  78. Gruberg, L. et al. Percutaneous revascularization of the internal mammary artery graft: short- and long-term outcomes. J. Am. Coll. Cardiol. 35, 944–948 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Buch, A. N. et al. Comparison of outcomes between bare metal stents and drug-eluting stents for percutaneous revascularization of internal mammary grafts. Am. J. Cardiol. 98, 722–724 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Sharma, A. K. et al. Clinical outcomes following stent implantation in internal mammary artery grafts. Catheter. Cardiovasc. Interv. 59, 436–441 (2003).

    Article  PubMed  Google Scholar 

  81. Núñez-Gil, I. J. et al. Internal mammary artery graft failure: clinical features, management, and long-term outcomes. Indian Heart J. 70 (Suppl. 3), 329–337 (2018).

    Article  Google Scholar 

  82. Elbadawi, A. et al. Outcomes of reoperative coronary artery bypass graft surgery in the United States. J. Am. Heart Assoc. 9, e016282 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yap, C. H. et al. Contemporary results show repeat coronary artery bypass grafting remains a risk factor for operative mortality. Ann. Thorac. Surg. 87, 1386–1391 (2009).

    Article  PubMed  Google Scholar 

  84. Brener, S. J. et al. Predictors of revascularization method and long-term outcome of percutaneous coronary intervention or repeat coronary bypass surgery in patients with multivessel coronary disease and previous coronary bypass surgery. Eur. Heart J. 27, 413–418 (2006).

    Article  PubMed  Google Scholar 

  85. Morrison, D. A. et al. Percutaneous coronary intervention versus repeat bypass surgery for patients with medically refractory myocardial ischemia: AWESOME randomized trial and registry experience with post-CABG patients. J. Am. Coll. Cardiol. 40, 1951–1954 (2002).

    Article  PubMed  Google Scholar 

  86. Zhou, P. et al. Meta-analysis of repeat revascularization of off-pump and on-pump coronary artery bypass surgery. Ann. Thorac. Surg. 106, 526–531 (2018).

    Article  PubMed  Google Scholar 

  87. Michael, T. T. et al. A randomized comparison of the transradial and transfemoral approaches for coronary artery bypass graft angiography and intervention: the RADIAL-CABG trial (RADIAL Versus Femoral Access for Coronary Artery Bypass Graft Angiography and Intervention). JACC Cardiovasc. Interv. 6, 1138–1144 (2013).

    Article  PubMed  Google Scholar 

  88. Israeli, Z. et al. Radial versus femoral approach for saphenous vein grafts angiography and interventions. Am. Heart J. 210, 1–8 (2019).

    Article  PubMed  Google Scholar 

  89. Januszek, R. et al. Transradial and transfemoral approach in patients with prior coronary artery bypass grafting. J. Clin. Med. 9, 764 (2020).

    Article  PubMed Central  Google Scholar 

  90. Manly, D. A. et al. Characteristics and outcomes of patients with history of CABG undergoing cardiac catheterization via the radial versus femoral approach. JACC Cardiovasc. Interv. 14, 907–916 (2021).

    Article  PubMed  Google Scholar 

  91. Claessen, B. E. P. M., Henriques, J. P. S. & Dangas, G. D. in Interventional Cardiology: Principles & Practice Ch. 19, 2nd edn (eds Dangas, G. D., Di Mario, C. & Kipshidze, N. N.) 201–204 (Wiley, 2017).

  92. Sirker, A. et al. Antiplatelet drug selection in PCI to vein grafts in patients with acute coronary syndrome and adverse clinical outcomes: insights from the British Cardiovascular Intervention Society database. Catheter. Cardiovasc. Interv. 92, 659–665 (2018).

    Article  PubMed  Google Scholar 

  93. Rha, S. W. et al. Bivalirudin versus heparin as an antithrombotic agent in patients who undergo percutaneous saphenous vein graft intervention with a distal protection device. Am. J. Cardiol. 96, 67–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Kumar, D. et al. Comparison of bivalirudin versus bivalirudin plus glycoprotein IIb/IIIa inhibitor versus heparin plus glycoprotein IIb/IIIa inhibitor in patients with acute coronary syndromes having percutaneous intervention for narrowed saphenous vein aorto-coronary grafts (the ACUITY trial investigators). Am. J. Cardiol. 106, 941–945 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Roffi, M. et al. Lack of benefit from intravenous platelet glycoprotein IIb/IIIa receptor inhibition as adjunctive treatment for percutaneous interventions of aortocoronary bypass grafts: a pooled analysis of five randomized clinical trials. Circulation 106, 3063–3067 (2002).

    Article  PubMed  Google Scholar 

  96. Sachdeva, A. et al. Discontinuation of long-term clopidogrel therapy is associated with death and myocardial infarction after saphenous vein graft percutaneous coronary intervention. J. Am. Coll. Cardiol. 60, 2357–2363 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Connolly, S. J. et al. Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391, 205–218 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Savage, M. P. et al. Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. Saphenous Vein De Novo Trial Investigators. N. Engl. J. Med. 337, 740–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Brilakis, E. S. et al. Drug-eluting stents versus bare-metal stents in saphenous vein grafts: a double-blind, randomised trial. Lancet 391, 1997–2007 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bhogal, S. et al. Drug-eluting versus bare metal stents in saphenous vein graft intervention: an updated comprehensive meta-analysis of randomized trials. Cardiovasc. Revasc. Med. 20, 758–767 (2019).

    Article  PubMed  Google Scholar 

  101. Jeger, R. V. et al. Drug-eluting stents compared with bare metal stents improve late outcome after saphenous vein graft but not after large native vessel interventions. Cardiology 112, 49–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Vermeersch, P. et al. Increased late mortality after sirolimus-eluting stents versus bare-metal stents in diseased saphenous vein grafts: results from the randomized DELAYED RRISC trial. J. Am. Coll. Cardiol. 50, 261–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Mehilli, J. et al. Drug-eluting versus bare-metal stents in saphenous vein graft lesions (ISAR-CABG): a randomised controlled superiority trial. Lancet 378, 1071–1078 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Brilakis, E. S. et al. Continued benefit from paclitaxel-eluting compared with bare-metal stent implantation in saphenous vein graft lesions during long-term follow-up of the SOS (Stenting of Saphenous Vein Grafts) trial. JACC Cardiovasc. Interv. 4, 176–182 (2011).

    Article  PubMed  Google Scholar 

  105. Colleran, R. et al. Efficacy over time with drug-eluting stents in saphenous vein graft lesions. J. Am. Coll. Cardiol. 71, 1973–1982 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Shah, R. & Hesterberg, K. Drug-eluting stents versus bare-metal stents for saphenous vein graft interventions. J. Thorac. Dis. 11, S1257 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. IJsselmuiden, A. et al. Comparison between the STENTYS self-apposing bare metal and paclitaxel-eluting coronary stents for the treatment of saphenous vein grafts (ADEPT trial). Neth. Heart J. 26, 94–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Yazdani, S. K. et al. Pathology of drug-eluting versus bare-metal stents in saphenous vein bypass graft lesions. JACC Cardiovasc. Interv. 5, 666–674 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stone, G. W. et al. 5-year follow-up of polytetrafluoroethylene-covered stents compared with bare-metal stents in aortocoronary saphenous vein grafts the randomized BARRICADE (barrier approach to restenosis: restrict intima to curtail adverse events) trial. JACC Cardiovasc. Interv. 4, 300–309 (2011).

    Article  PubMed  Google Scholar 

  110. Vaknin-Assa, H. et al. Long term outcomes of MGuard stent deployment in saphenous vein grafts and native coronary arteries: a single center experience. Isr. Med. Assoc. J. 19, 172–176 (2017).

    PubMed  Google Scholar 

  111. Latif, F. et al. Stent-only versus adjunctive balloon angioplasty approach for saphenous vein graft percutaneous coronary intervention: insights from DIVA trial. Circ. Cardiovasc. Interv. 13, e008494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Iakovou, I. et al. Relation of final lumen dimensions in saphenous vein grafts after stent implantation to outcome. Am. J. Cardiol. 93, 963–968 (2004).

    Article  PubMed  Google Scholar 

  113. Hong, Y. J. et al. Outcome of undersized drug-eluting stents for percutaneous coronary intervention of saphenous vein graft lesions. Am. J. Cardiol. 105, 179–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Gruberg, L. et al. In-hospital and long-term results of stent deployment compared with balloon angioplasty for treatment of narrowing at the saphenous vein graft distal anastomosis site. Am. J. Cardiol. 84, 1381–1384 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Michaels, A. D. et al. Pretreatment with intragraft verapamil prior to percutaneous coronary intervention of saphenous vein graft lesions: results of the randomized, controlled vasodilator prevention on no-reflow (VAPOR) trial. J. Invasive Cardiol. 14, 299–302 (2002).

    PubMed  Google Scholar 

  116. Zoghbi, G. J. et al. Pretreatment with nitroprusside for microcirculatory protection in saphenous vein graft interventions. J. Invasive Cardiol. 21, 34–39 (2009).

    PubMed  Google Scholar 

  117. Kapoor, N., Yalamanchili, V., Siddiqui, T., Raza, S. & Leesar, M. A. Cardioprotective effect of high-dose intragraft adenosine infusion on microvascular function and prevention of no-reflow during saphenous vein grafts intervention. Catheter. Cardiovasc. Interv. 83, 1045–1054 (2014).

    Article  PubMed  Google Scholar 

  118. Huang, R. I. et al. Efficacy of intracoronary nicardipine in the treatment of no-reflow during percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 68, 671–676 (2006).

    Article  PubMed  Google Scholar 

  119. Al-Qezweny, M. N. A. et al. in Coronary Graft Failure: State of the Art (eds Ţintoiu, I. C., Underwood, M. J., Cook, S.P., Kitabata, H. & Abbas, A.) 539–554 (Springer, 2016).

Download references

Acknowledgements

M.F.L.G. has received institutional grant/research support from the NIH and the Canadian Institutes of Health Research.

Review criteria

A search was performed for original articles published between 1980 and 2021 focusing on contemporary practices in both coronary artery bypass graft surgery as well as follow-up percutaneous coronary interventions in patients who have previously undergone coronary artery bypass graft surgery. The search terms used were ‘prior coronary artery bypass graft’, ‘saphenous vein graft’, ‘radial artery graft’, ‘bilateral internal thoracic artery’, ‘right internal thoracic artery’, ‘multiple artery grafting’, ‘total arterial revascularization’, ‘venous graft failure’, ‘arterial graft failure’, ‘perioperative graft failure’, ‘prior CABG revascularization’, ‘prior CABG medical treatment’, ‘saphenous vein graft PCI’, ‘native vessel PCI prior CABG’, ‘arterial graft PCI’, ‘repeat CABG surgery’, ‘radial PCI prior CABG’, ‘femoral PCI prior CABG’, ‘stent selection prior CABG’ and ‘EPD graft PCI’, alone and in combination. All articles identified were English-language, full-text papers. The reference lists of identified articles were also searched for further relevant papers.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed to discussions of its content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to George D. Dangas.

Ethics declarations

Competing interests

R.M. and G.D.D. have received institutional grant/research support from Abbott Laboratories, AstraZeneca, Boston Scientific, Daiichi-Sankyo and Medtronic; have served as consultants for Biosensors; and have received speaker honoraria from Chiesi. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks Y. Jang and C. Juergens for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beerkens, F.J., Claessen, B.E., Mahan, M. et al. Contemporary coronary artery bypass graft surgery and subsequent percutaneous revascularization. Nat Rev Cardiol 19, 195–208 (2022). https://doi.org/10.1038/s41569-021-00612-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00612-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing