Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A fate worse than death: apoptosis as an oncogenic process

Abstract

Apoptotic cell death is widely considered a positive process that both prevents and treats cancer. Although undoubtedly having a beneficial role, paradoxically, apoptosis can also cause unwanted effects that may even promote cancer. In this Opinion article we highlight some of the ways by which apoptosis can exert oncogenic functions. We argue that fully understanding this dark side will be required to optimally engage apoptosis, thereby maximizing tumour cell kill while minimizing unwanted pro-tumorigenic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extrinsic and intrinsic apoptotic signalling pathways.
Figure 2: Cell-extrinsic pro-oncogenic effects of apoptotic cell death.
Figure 3: Oncogenic effects of engaging sub-lethal apoptotic signalling.
Figure 4: Enhancing apoptosis while minimizing damage.

Similar content being viewed by others

References

  1. Green, D. R. Means to an End: Apoptosis and Other Cell Death Mechanisms (Cold Spring Harbor Laboratory Press, 2011).

    Google Scholar 

  2. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 (2000).

    CAS  PubMed  Google Scholar 

  3. Nagata, S. Apoptosis and autoimmune diseases. Ann. NY Acad. Sci. 1209, 10–16 (2010).

    CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016).

    CAS  PubMed  Google Scholar 

  6. Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132 (2008).

    CAS  PubMed  Google Scholar 

  7. FDA approves new drug for chronic lymphocytic leukemia in patients with a specific chromosomal abnormality. FDA http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm495253.htm,

  8. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).

    CAS  PubMed  Google Scholar 

  9. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 (2008).

    CAS  PubMed  Google Scholar 

  10. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  11. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    CAS  PubMed  Google Scholar 

  12. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    CAS  PubMed  Google Scholar 

  13. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    CAS  PubMed  Google Scholar 

  14. Tait, S. W., Ichim, G. & Green, D. R. Die another way—non-apoptotic mechanisms of cell death. J. Cell Sci. 127, 2135–2144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gama, V. et al. The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Sci.Signal. 7, ra67 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Wright, K. M., Linhoff, M. W., Potts, P. R. & Deshmukh, M. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J. Cell Biol. 167, 303–313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    CAS  PubMed  Google Scholar 

  18. Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    CAS  PubMed  Google Scholar 

  20. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    CAS  PubMed  Google Scholar 

  21. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    CAS  PubMed  Google Scholar 

  22. Finch, A. et al. Bcl-xL gain of function and p19 ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. Cancer Cell 10, 113–120 (2006).

    CAS  PubMed  Google Scholar 

  23. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    CAS  PubMed  Google Scholar 

  24. Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

    PubMed  Google Scholar 

  25. Montero, J. et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 160, 977–989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    CAS  PubMed  Google Scholar 

  28. Lopez, J. & Tait, S. W. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer 112, 957–962 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wyllie, A. H. The biology of cell death in tumours. Anticancer Res. 5, 131–136 (1985).

    CAS  PubMed  Google Scholar 

  30. Naresh, K. N., Lakshminarayanan, K., Pai, S. A. & Borges, A. M. Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: a hypothesis to support this paradoxical association. Cancer 91, 578–584 (2001).

    CAS  PubMed  Google Scholar 

  31. Jalalinadoushan, M., Peivareh, H. & Azizzadeh Delshad, A. Correlation between apoptosis and histological grade of transitional cell carcinoma of urinary bladder. Urol. J. 1, 177–179 (2004).

    PubMed  Google Scholar 

  32. Sun, B. et al. Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur. J. Cancer Prev. 15, 258–265 (2006).

    CAS  PubMed  Google Scholar 

  33. Alcaide, J. et al. The role and prognostic value of apoptosis in colorectal carcinoma. BMC Clin. Pathol. 13, 24 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. De Jong, J. S., van Diest, P. J. & Baak, J. P. Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br. J. Cancer 82, 368–373 (2000).

    CAS  PubMed  Google Scholar 

  35. Dawson, S. J. et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer 103, 668–675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Anagnostou, V. K. et al. High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer 10, 186 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Renouf, D. J. et al. BCL-2 expression is prognostic for improved survival in non-small cell lung cancer. J. Thorac. Oncol. 4, 486–491 (2009).

    PubMed  Google Scholar 

  38. Hogarth, L. A. & Hall, A. G. Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood 93, 2671–2678 (1999).

    CAS  PubMed  Google Scholar 

  39. Kaparou, M. et al. Enhanced levels of the apoptotic BAX/BCL-2 ratio in children with acute lymphoblastic leukemia and high-risk features. Genet. Mol. Biol. 36, 7–11 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7, 491–501 (2004).

    CAS  PubMed  Google Scholar 

  42. Huh, J. R., Guo, M. & Hay, B. A. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr. Biol. 14, 1262–1266 (2004).

    CAS  PubMed  Google Scholar 

  43. Perez-Garijo, A., Martin, F. A. & Morata, G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131, 5591–5598 (2004).

    CAS  PubMed  Google Scholar 

  44. Li, F. et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3, ra13 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Atsumi, G. et al. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation. J. Biol. Chem. 273, 13870–13877 (1998).

    CAS  PubMed  Google Scholar 

  46. Revesz, L. Effect of tumour cells killed by X-rays upon the growth of admixed viable cells. Nature 178, 1391–1392 (1956).

    CAS  PubMed  Google Scholar 

  47. Chaurio, R. et al. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity 46, 317–322 (2013).

    CAS  PubMed  Google Scholar 

  48. Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    CAS  PubMed  Google Scholar 

  50. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    CAS  PubMed  Google Scholar 

  52. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Marusyk, A., Porter, C. C., Zaberezhnyy, V. & DeGregori, J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 8, e1000324 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302, 1036–1038 (2003).

    CAS  PubMed  Google Scholar 

  55. Jeffers, J. R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328 (2003).

    CAS  PubMed  Google Scholar 

  56. Garrison, S. P. et al. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol. Cell. Biol. 28, 5391–5402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Michalak, E. M. et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16, 684–696 (2009).

    CAS  PubMed  Google Scholar 

  58. Michalak, E. M. et al. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev. 24, 1608–1613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Labi, V. et al. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev. 24, 1602–1607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Qiu, W. et al. PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54, 1249–1258 (2011).

    CAS  PubMed  Google Scholar 

  61. Pierce, R. H., Vail, M. E., Ralph, L., Campbell, J. S. & Fausto, N. Bcl-2 expression inhibits liver carcinogenesis and delays the development of proliferating foci. Am. J. Pathol. 160, 1555–1560 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Orlik, J. et al. The BH3-only protein BID impairs the p38-mediated stress response and promotes hepatocarcinogenesis during chronic liver injury in mice. Hepatology 62, 816–828 (2015).

    CAS  PubMed  Google Scholar 

  63. Bai, L., Ni, H. M., Chen, X., DiFrancesca, D. & Yin, X. M. Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am. J. Pathol. 166, 1523–1532 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bejar, R. & Steensma, D. P. Recent developments in myelodysplastic syndromes. Blood 124, 2793–2803 (2014).

    CAS  PubMed  Google Scholar 

  65. Ma, X. Epidemiology of myelodysplastic syndromes. Am. J. Med. 125, S2–S5 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. Godley, L. A. & Larson, R. A. Therapy-related myeloid leukemia. Semin. Oncol. 35, 418–429 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guirguis, A. A. et al. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia. Cell Death Differ. 23, 1049–1059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Slape, C. I. et al. Inhibition of apoptosis by BCL2 prevents leukemic transformation of a murine myelodysplastic syndrome. Blood 120, 2475–2483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang, J. et al. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol. Med. Rep. 12, 7907–7914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tardaguila, M. & Manes, S. CX3CL1 at the crossroad of EGF signals: relevance for the progression of ERBB2 breast carcinoma. Oncoimmunology 2, e25669 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Spychala, J. Tumor-promoting functions of adenosine. Pharmacol. Ther. 87, 161–173 (2000).

    CAS  PubMed  Google Scholar 

  74. Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 223, 177–194 (2011).

    CAS  PubMed  Google Scholar 

  75. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ford, C. A. et al. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr. Biol. 25, 577–588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stanford, J. C. et al. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J. Clin. Invest. 124, 4737–4752 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Callihan, E. B. et al. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Res. Treat. 138, 549–559 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Schedin, P. J. & Watson, C. J. The complexity of the relationships between age at first birth and breast cancer incidence curves implicate pregnancy in cancer initiation as well as promotion of existing lesions. J. Mammary Gland Biol. Neoplasia 14, 85–86 (2009).

    PubMed  Google Scholar 

  80. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lovric, M. M. & Hawkins, C. J. TRAIL treatment provokes mutations in surviving cells. Oncogene 29, 5048–5060 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, X. et al. Caspase-3 promotes genetic instability and carcinogenesis. Mol. Cell 58, 284–296 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2, 156–162 (2000).

    CAS  PubMed  Google Scholar 

  84. Rehm, M., Dussmann, H. & Prehn, J. H. Real-time single cell analysis of Smac/DIABLO release during apoptosis. J. Cell Biol. 162, 1031–1043 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rehm, M., Huber, H. J., Dussmann, H. & Prehn, J. H. Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J. 25, 4338–4349 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5, 157–163 (1999).

    CAS  PubMed  Google Scholar 

  87. Albeck, J. G. et al. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol. Cell 30, 11–25 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    CAS  PubMed  Google Scholar 

  89. Galluzzi, L., Larochette, N., Zamzami, N. & Kroemer, G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25, 4812–4830 (2006).

    CAS  PubMed  Google Scholar 

  90. Tait, S. W. et al. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell 18, 802–813 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Orth, J. D., Loewer, A., Lahav, G. & Mitchison, T. J. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol. Biol. Cell 23, 567–576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Colin, D. J., Hain, K. O., Allan, L. A. & Clarke, P. R. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins. Open Biol. 5, 140156 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Luke, J. J., Van De Wetering, C. I. & Knudson, C. M. Lymphoma development in Bax transgenic mice is inhibited by Bcl-2 and associated with chromosomal instability. Cell Death Differ. 10, 740–748 (2003).

    CAS  PubMed  Google Scholar 

  94. Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334–346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gole, B. & Wiesmuller, L. Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front. Cell Dev. Biol. 3, 41 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Hars, E. S., Lyu, Y. L., Lin, C. P. & Liu, L. F. Role of apoptotic nuclease caspase-activated DNase in etoposide-induced treatment-related acute myelogenous leukemia. Cancer Res. 66, 8975–8979 (2006).

    CAS  PubMed  Google Scholar 

  97. Sim, S. P. & Liu, L. F. Nucleolytic cleavage of the mixed lineage leukemia breakpoint cluster region during apoptosis. J. Biol. Chem. 276, 31590–31595 (2001).

    CAS  PubMed  Google Scholar 

  98. Betti, C. J., Villalobos, M. J., Diaz, M. O. & Vaughan, A. T. Apoptotic stimuli initiate MLL–AF9 translocations that are transcribed in cells capable of division. Cancer Res. 63, 1377–1381 (2003).

    CAS  PubMed  Google Scholar 

  99. Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30, 677–706 (2012).

    CAS  PubMed  Google Scholar 

  100. Fresquet, V., Rieger, M., Carolis, C., Garcia-Barchino, M. J. & Martinez-Climent, J. A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood 123, 4111–4119 (2014).

    CAS  PubMed  Google Scholar 

  101. Song, J. H., Kandasamy, K., Zemskova, M., Lin, Y. W. & Kraft, A. S. The BH3 mimetic ABT-737 induces cancer cell senescence. Cancer Res. 71, 506–515 (2011).

    CAS  PubMed  Google Scholar 

  102. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hardwick, J. M. & Soane, L. Multiple functions of BCL-2 family proteins. Cold Spring Harb. Perspect. Biol. 5, a008722 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Hyman, B. T. & Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat. Rev. Neurosci. 13, 395–406 (2012).

    CAS  PubMed  Google Scholar 

  105. Kilbride, S. M. & Prehn, J. H. Central roles of apoptotic proteins in mitochondrial function. Oncogene 32, 2703–2711 (2013).

    CAS  PubMed  Google Scholar 

  106. Bonneau, B., Prudent, J., Popgeorgiev, N. & Gillet, G. Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim. Biophys. Acta 1833, 1755–1765 (2013).

    CAS  PubMed  Google Scholar 

  107. Pedro, J. M. et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2–BECN1 complex and autophagy. Autophagy 11, 452–459 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Lindqvist, L. M., Heinlein, M., Huang, D. C. & Vaux, D. L. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl Acad. Sci. USA 111, 8512–8517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Choi, S. et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat. Commun. 7, 10384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dimberg, L. Y. et al. On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene 32, 1341–1350 (2013).

    CAS  PubMed  Google Scholar 

  111. Von Karstedt, S. et al. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27, 561–573 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Somasekharan, S. P. et al. TRAIL promotes membrane blebbing, detachment and migration of cells displaying a dysfunctional intrinsic pathway of apoptosis. Apoptosis 18, 324–336 (2013).

    CAS  PubMed  Google Scholar 

  113. Ehrenschwender, M. et al. Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation. Cell Death Differ. 17, 1435–1447 (2010).

    CAS  PubMed  Google Scholar 

  114. Peter, M. E. et al. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 22, 885–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, L. et al. CD95 promotes tumour growth. Nature 465, 492–496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hadji, A. et al. Death induced by CD95 or CD95 ligand elimination. Cell Rep. 7, 208–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ceppi, P. et al. CD95 and CD95L promote and protect cancer stem cells. Nat. Commun. 5, 5238 (2014).

    CAS  PubMed  Google Scholar 

  118. Fanidi, A., Harrington, E. A. & Evan, G. I. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–556 (1992).

    CAS  PubMed  Google Scholar 

  119. Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nat. Med. 6, 1029–1035 (2000).

    CAS  PubMed  Google Scholar 

  120. Letai, A., Sorcinelli, M. D., Beard, C. & Korsmeyer, S. J. Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 6, 241–249 (2004).

    CAS  PubMed  Google Scholar 

  121. Kelly, G. L. et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev. 28, 58–70 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Garcia, E. L. & Mills, A. A. Getting around lethality with inducible Cre-mediated excision. Semin. Cell Dev. Biol. 13, 151–158 (2002).

    CAS  PubMed  Google Scholar 

  123. Lopez, J. et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat. Commun. 7, 10538 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, J. et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat. Commun. 4, 2157 (2013).

    PubMed  Google Scholar 

  125. Earley, S. et al. In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. Cancer Res. 72, 2949–2956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ellenbroek, S. I. & van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer 14, 406–418 (2014).

    CAS  PubMed  Google Scholar 

  127. Janssen, A., Beerling, E., Medema, R. & van Rheenen, J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS ONE 8, e64029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, K. W., Moretti, L. & Lu, B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS ONE 3, e2275 (2008).

    PubMed  PubMed Central  Google Scholar 

  129. Werthmoller, N., Frey, B., Wunderlich, R., Fietkau, R. & Gaipl, U. S. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis. 6, e1761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014).

    CAS  PubMed  Google Scholar 

  133. Ahn, J., Konno, H. & Barber, G. N. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene 34, 5302–5308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  136. Swann, J. B. & Smyth, M. J. Immune surveillance of tumors. J. Clin. Invest. 117, 1137–1146 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  139. Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov. 11, 109–124 (2012).

    CAS  PubMed  Google Scholar 

  140. Tait, S. W. & Green, D. R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol. 5, a008706 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Hellwig, C. T. et al. Real time analysis of tumor necrosis factor-related apoptosis-inducing ligand/cycloheximide-induced caspase activities during apoptosis initiation. J. Biol. Chem. 283, 21676–21685 (2008).

    CAS  PubMed  Google Scholar 

  142. Hellwig, C. T. et al. Activity of protein kinase CK2 uncouples Bid cleavage from caspase-8 activation. J. Cell Sci. 123, 1401–1406 (2010).

    CAS  PubMed  Google Scholar 

  143. Desagher, S. et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell 8, 601–611 (2001).

    CAS  PubMed  Google Scholar 

  144. Wolan, D. W., Zorn, J. A., Gray, D. C. & Wells, J. A. Small-molecule activators of a proenzyme. Science 326, 853–858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641–648 (2004).

    CAS  PubMed  Google Scholar 

  146. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Berardo, M. D. et al. bcl-2 and apoptosis in lymph node positive breast carcinoma. Cancer 82, 1296–1302 (1998).

    CAS  PubMed  Google Scholar 

  148. Vargas-Roig, L. M. et al. Prognostic value of Bcl-2 in breast cancer patients treated with neoadjuvant anthracycline based chemotherapy. Mol. Oncol. 2, 102–111 (2008).

    PubMed  PubMed Central  Google Scholar 

  149. Neri, A. et al. Bcl-2 expression correlates with lymphovascular invasion and long-term prognosis in breast cancer. Breast Cancer Res. Treat. 99, 77–83 (2006).

    CAS  PubMed  Google Scholar 

  150. Meterissian, S. H. et al. Bcl-2 is a useful prognostic marker in Dukes' B colon cancer. Ann. Surg. Oncol. 8, 533–537 (2001).

    CAS  PubMed  Google Scholar 

  151. Watson, N. F. et al. Evidence that the p53 negative/Bcl-2 positive phenotype is an independent indicator of good prognosis in colorectal cancer: a tissue microarray study of 460 patients. World J. Surg. Oncol. 3, 47 (2005).

    PubMed  PubMed Central  Google Scholar 

  152. Tomita, M. et al. Prognostic significance of bcl-2 expression in resected pN2 non-small cell lung cancer. Eur. J. Surg. Oncol. 29, 654–657 (2003).

    CAS  PubMed  Google Scholar 

  153. Pillai, K., Pourgholami, M. H., Chua, T. C. & Morris, D. L. Does the expression of BCL2 have prognostic significance in malignant peritoneal mesothelioma? Am. J. Cancer Res. 3, 312–322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kohler, T. et al. High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia 16, 22–29 (2002).

    CAS  PubMed  Google Scholar 

  155. Bairey, O., Zimra, Y., Shaklai, M., Okon, E. & Rabizadeh, E. Bcl-2, Bcl-X, Bax, and Bak expression in short- and long-lived patients with diffuse large B-cell lymphomas. Clin. Cancer Res. 5, 2860–2866 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.I. is funded by an EMBO Advanced Fellowship (aALTF 772-2015) and Tenovus Scotland. The Tait laboratory is funded by Cancer Research UK (C40872/A20145), the Royal Society, the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/K008374/1), the European Union, Breast Cancer Now (2015NovSPR589) and Tenovus Scotland. S.W.G.T. is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. G. Tait.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichim, G., Tait, S. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 16, 539–548 (2016). https://doi.org/10.1038/nrc.2016.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.58

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer