Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shifting the paradigms for tumor suppression: lessons from the p53 field

Abstract

The TP53 gene continues to hold distinction as the most frequently mutated gene in cancer. Since its discovery in 1979, hundreds of research groups have devoted their efforts toward understanding why this gene is so frequently selected against by tumors, with the hopes of harnessing this information toward the improved therapy of cancer. The result is that this protein has been meticulously analyzed in tumor and normal cells, resulting in over 100,000 publications, with an average of 5000 papers published on p53 every year for the past decade. The journey toward understanding p53 function has been anything but straightforward; in fact, the field is notable for the numerous times that established paradigms not only have been shifted, but in fact have been shattered or reversed. In this review, we will discuss the manuscripts, or series of manuscripts, that have most radically changed our thinking about how this tumor suppressor functions, and we will delve into the emerging challenges for the future in this important area of research. It is hoped that this review will serve as a useful historical reference for those interested in p53, and a useful lesson on the need to be flexible in the face of established paradigms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcription-dependent and -independent mechanisms of p53-mediated apoptosis.
Fig. 2: Ferroptosis is implicated in tumor suppression by p53.
Fig. 3: Mutant p53 shows paradoxical transformation and tumor suppression in GEMM models of intestinal neoplasia.

Similar content being viewed by others

References

  1. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85.e318.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Consortium ITP-CAoWG. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93.

    Google Scholar 

  4. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18:7644–55.

    CAS  PubMed  Google Scholar 

  5. Williams AB, Schumacher B. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016;6:a026070.

    PubMed  PubMed Central  Google Scholar 

  6. Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016;6:a026104.

    PubMed  PubMed Central  Google Scholar 

  7. Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci USA. 1996;93:15209–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32:5129–43.

    CAS  PubMed  Google Scholar 

  9. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–13. PMC5729529.

    CAS  PubMed  Google Scholar 

  10. Vousden KH. Functions of p53 in metabolism and invasion. Biochem Soc Trans. 2009;37:511–7.

    CAS  PubMed  Google Scholar 

  11. Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009;9:691–700.

    CAS  PubMed  Google Scholar 

  12. White E. Autophagy and p53. Cold Spring Harb Perspect Med. 2016;6:a026120.

    PubMed  PubMed Central  Google Scholar 

  13. Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.

    CAS  PubMed  Google Scholar 

  14. Berger SL. Keeping p53 in check: a high-stakes balancing act. Cell. 2010;142:17–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20:199–210.

    CAS  PubMed  Google Scholar 

  16. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 2002;109:335–46.

    CAS  PubMed  Google Scholar 

  17. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 2011;145:571–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature. 1984;312:649–51.

    CAS  PubMed  Google Scholar 

  20. Eliyahu D, Raz A, Gruss P, Givol D, Oren M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature. 1984;312:646–9.

    CAS  PubMed  Google Scholar 

  21. Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature. 1984;312:651–4.

    CAS  PubMed  Google Scholar 

  22. Eliyahu D, Michalovitz D, Oren M. Overproduction of p53 antigen makes established cells highly tumorigenic. Nature. 1985;316:158–60.

    CAS  PubMed  Google Scholar 

  23. Mowat M, Cheng A, Kimura N, Bernstein A, Benchimol S. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature. 1985;314:633–6.

    CAS  PubMed  Google Scholar 

  24. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989;57:1083–93.

    CAS  PubMed  Google Scholar 

  25. Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol. 1989;63:739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53.

    CAS  PubMed  Google Scholar 

  27. Malkin D, Li FP, Strong LC, Fraumeni JF Jr., Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    CAS  PubMed  Google Scholar 

  28. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    CAS  PubMed  Google Scholar 

  29. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH. Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet. 1996;12:191–4.

    CAS  PubMed  Google Scholar 

  30. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.

    CAS  PubMed  Google Scholar 

  31. Wu L, de Bruin A, Saavedra HI, Starovic M, Trimboli A, Yang Y, et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature. 2003;421:942–7.

    CAS  PubMed  Google Scholar 

  32. Wolf D, Harris N, Rotter V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell. 1984;38:119–26.

    CAS  PubMed  Google Scholar 

  33. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, et al. Gain of function mutations in p53. Nat Genet. 1993;4:42–6.

    CAS  PubMed  Google Scholar 

  34. Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science. 2019;365:599–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell. 1991;65:1083–91.

    CAS  PubMed  Google Scholar 

  36. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    CAS  PubMed  Google Scholar 

  37. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.

    CAS  PubMed  Google Scholar 

  38. Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 2003;17:2233–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chipuk JE, Green DR. Cytoplasmic p53: bax and forward. Cell Cycle. 2004;3:429–31.

    CAS  PubMed  Google Scholar 

  40. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.

    CAS  PubMed  Google Scholar 

  41. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4:842–9.

    CAS  PubMed  Google Scholar 

  42. Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994;370:220–3.

    CAS  PubMed  Google Scholar 

  43. Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 1994;8:2817–30.

    CAS  PubMed  Google Scholar 

  44. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000;275:16202–12.

    CAS  PubMed  Google Scholar 

  45. Chipuk JE, Maurer U, Green DR, Schuler M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell. 2003;4:371–81.

    CAS  PubMed  Google Scholar 

  46. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.

    CAS  PubMed  Google Scholar 

  47. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732–5.

    CAS  PubMed  Google Scholar 

  48. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6:443–50.

    CAS  PubMed  Google Scholar 

  49. Murphy ME, Leu JI, George DL. p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle. 2004;3:836–9.

    CAS  PubMed  Google Scholar 

  50. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang D, Brady CA, Johnson TM, Lee EY, Park EJ, Scott MP, et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci USA. 2011;108:17123–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson TM, Hammond EM, Giaccia A, Attardi LD. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet. 2005;37:145–52.

    CAS  PubMed  Google Scholar 

  53. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–6. https://doi.org/10.1038/378203a0.

    Article  CAS  PubMed  Google Scholar 

  55. Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 2016;17:366–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 2016;30:918–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc Natl Acad Sci USA. 2019;116:8390–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh KS, Leu JI, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gnanapradeepan K, Leu JI, Basu S, Barnoud T, Good M, Lee JV, et al. Increased mTOR activity and metabolic efficiency in mouse and human cells containing the African-centric tumor-predisposing p53 variant Pro47Ser. Elife. 2020;9:e55994. https://doi.org/10.7554/eLife.55994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barnoud T, Parris JLD, Murphy ME. Tumor cells containing the African-Centric S47 variant of TP53 show increased Warburg metabolism. Oncotarget. 2019;10:1217–23.

    PubMed  PubMed Central  Google Scholar 

  62. Valente, LJ, Tarangelo, A, Li, AM, Naciri, M, Raj, N, Boutelle, AM, et al. p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. J Cell Biol. 2020;219.

  63. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20:1692–704.

    CAS  PubMed  Google Scholar 

  64. Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 2018;22:569–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21:579–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003;302:1036–8.

    CAS  PubMed  Google Scholar 

  67. Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL, et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 2013;3:1339–45.

    CAS  PubMed  Google Scholar 

  68. Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, et al. A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell. 2017;32:460–73.e466.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bieging-Rolett KT, Kaiser AM, Morgens DW, Boutelle AM, Seoane JA, Van Nostrand EL, et al. Zmat3 is a key splicing regulator in the p53 tumor suppression program. Mol Cell. 2020;80:452–69.e459.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Muys BR, Anastasakis DG, Claypool D, Pongor L, Li XL, Grammatikakis I, et al. The p53-induced RNA-binding protein ZMAT3 is a splicing regulator that inhibits the splicing of oncogenic CD44 variants in colorectal carcinoma. Genes Dev. 2021;35:102–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kadosh E, Snir-Alkalay I, Venkatachalam A, May S, Lasry A, Elyada E, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature. 2020;586:133–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang PY, Ma W, Park JY, Celi FS, Arena R, Choi JW, et al. Increased oxidative metabolism in the Li-Fraumeni syndrome. N. Engl J Med. 2013;368:1027–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vicens A, Posada D. Selective pressures on human cancer genes along the evolution of mammals. Genes. 2018;9:582. https://doi.org/10.3390/genes9120582.

    Article  CAS  PubMed Central  Google Scholar 

  75. Smith KR, Hanson HA, Mineau GP, Buys SS. Effects of BRCA1 and BRCA2 mutations on female fertility. Proc Biol Sci. 2012;279:1389–95.

    CAS  PubMed  Google Scholar 

  76. Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA. 2002;99:937–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA. 2006;103:15056–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA. 2008;105:10360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu X, Kogan S, Chen Y, Tsang AT, Withers T, Lin H, et al. Zinc metallochaperones reactivate mutant p53 using an ON/OFF switch mechanism: a new paradigm in cancer therapeutics. Clin Cancer Res. 2018;24:4505–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.

    PubMed  Google Scholar 

  81. Schulz-Heddergott R, Stark N, Edmunds SJ, Li J, Conradi LC, Bohnenberger H, et al. Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits stat3-mediated tumor growth and invasion. Cancer Cell. 2018;34:298–314.e297.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Barnoud T, Leung JC, Leu JI, Basu S, Poli ANR, Parris JLD, et al. A novel inhibitor of HSP70 induces mitochondrial toxicity and immune cell recruitment in tumors. Cancer Res. 2020;80:5270–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schulz-Heddergott, R, Moll, UM. Gain-of-function (GOF) mutant p53 as actionable therapeutic target. Cancers. 2018;10.

  84. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R, et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell. 2012;148:244–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  86. Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25:133–43.

    CAS  PubMed  Google Scholar 

  87. Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 2010;20:14–24.

    CAS  PubMed  Google Scholar 

  88. Xu Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 2003;10:400–3.

    CAS  PubMed  Google Scholar 

  89. Fernandez-Fernandez MR, Sot B. The relevance of protein-protein interactions for p53 function: the CPE contribution. Protein Eng Des Sel. 2011;24:41–51.

    CAS  PubMed  Google Scholar 

  90. Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response. J Cell Sci. 2020;133:jcs237453. https://doi.org/10.1242/jcs.237453.

    Article  CAS  PubMed  Google Scholar 

  91. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481–96.e486.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H, Arrondeau J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to Anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 2018;24:5710–23.

    CAS  PubMed  Google Scholar 

  93. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23:3012–24.

    CAS  PubMed  Google Scholar 

  94. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y. et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. 2016;108:djv303. https://doi.org/10.1093/jnci/djv303.

    Article  CAS  PubMed  Google Scholar 

  95. Hsiue, EH, Wright, KM, Douglass, J, Hwang, MS, Mog, BJ, Pearlman, AH, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371.

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01 CA201430 and CA102184 to MEM, and K99 CA241367 to TB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to apologize for all the investigators whose references could not be included in this article due to space constraints. The authors would also like to thank Keerthana Gnanapradeepan, Jessica C. Leung, and Joshua L. D. Parris in the Murphy lab for assistance and thoughtful discussions. Figures were created with BioRender.com under a paid subscription to AI.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the review: MEM. Generation of the figures: TB and AI. Drafting of manuscript: all. Proofing and revision of manuscript: all.

Corresponding author

Correspondence to Maureen E. Murphy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnoud, T., Indeglia, A. & Murphy, M.E. Shifting the paradigms for tumor suppression: lessons from the p53 field. Oncogene 40, 4281–4290 (2021). https://doi.org/10.1038/s41388-021-01852-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01852-z

This article is cited by

Search

Quick links