Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Non-lethal outcomes of engaging regulated cell death pathways in cancer

Abstract

Regulated cell death (RCD) is essential for successful systemic cancer therapy. Yet, the engagement of RCD pathways does not inevitably result in cell death. Instead, RCD pathways can take part in diverse biological processes if the cells survive. Consequently, these surviving cells, for which we propose the term ‘flatliners’, harbor important functions. These evolutionarily conserved responses can be exploited by cancer cells to promote their own survival and growth, with challenges and opportunities for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell death pathways.
Fig. 2: Apoptosis induction and survival.
Fig. 3: ESCRT-mediated membrane repair of plasma membrane damage.
Fig. 4: Non-lethal outcomes for apoptosis-induced flatliners.
Fig. 5: Activation of NF-κB signaling.

Similar content being viewed by others

References

  1. Lockshin, R. A. & Williams, C. M. Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol. 10, 643–649 (1964).

    Article  CAS  Google Scholar 

  2. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strasser, A. & Vaux, D. L. Viewing BCL2 and cell death control from an evolutionary perspective. Cell Death Differ. 25, 13–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan, D. & Weinberg, R. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Letai, A. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ichim, G. & Tait, S. W. G. A fate worse than death: apoptosis as an oncogenic process. Nat. Rev. Cancer 16, 539–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Ali, M. et al. Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Sci. Transl. Med. 14, eabc7480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Giampazolias, E. et al. Mitochondrial permeabilisation engages NF-κB dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berthenet, K. et al. Failed apoptosis enhances melanoma cancer cell aggressiveness. Cell Rep. 31, 107731 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers 13, 2666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lockshin, R. A. & Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nat. Rev. Mol. Cell Biol. 2, 545–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Lakhani, S. A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tait, S. W. G. & Green, D. R. Caspase-independent cell death: leaving the set without the final cut. Oncogene 27, 6452–6461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhola, P. D. et al. High-throughput dynamic BH3 profiling may quickly and accurately predict effective therapies in solid tumors. Sci. Signal. 13, eaay1451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, R. et al. Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer Metastasis Rev. 37, 227–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Estornes, Y. et al. RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions. Cell Death Dis. 5, e1555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hughes, M. A. et al. Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate. Mol. Cell 61, 834–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fulda, S. Caspase-8 in cancer biology and therapy. Cancer Lett. 281, 128–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Peter, M. E. et al. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 22, 549–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alves, L. C., Corazza, N., Micheau, O. & Krebs, P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J. 288, 5530–5554 (2021).

    Article  Google Scholar 

  34. Cullen, S. P. & Martin, S. J. Fas and TRAIL ‘death receptors’ as initiators of inflammation: implications for cancer. Semin. Cell Dev. Biol. 39, 26–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Flusberg, D. A., Roux, J., Spencer, S. L. & Sorger, P. K. Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol. Biol. Cell 24, 2186–2200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, H. L. et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang, H. L., Tang, H. M., Fung, M. C. & Hardwick, J. M. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci. Rep. 5, 9015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Vandenabeele, P., Galluzzi, L., Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Tenev, T. et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Tummers, B. & Green, D. R. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol. Rev. 102, 411–454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, X. et al. MLKL promotes cellular differentiation in myeloid leukemia by facilitating the release of G-CSF. Cell Death Differ. 28, 3235–3250 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koo, G.-B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng, X. et al. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62, 592–601 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Nicolè, L. et al. Necroptosis-driving genes RIPK1, RIPK3 and MLKL-p are associated with intratumoral CD3+ and CD8+ T cell density and predict prognosis in hepatocellular carcinoma. J. Immunother. Cancer 10, e004031 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Strilic, B. et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536, 215–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Meng, Y., Sandow, J. J., Czabotar, P. E. & Murphy, J. M. The regulation of necroptosis by post-translational modifications. Cell Death Differ. 28, 861–883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCullough, J., Frost, A. & Sundquist, W. I. Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes. Annu. Rev. Cell Dev. Biol. 34, 85–109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Gong, Y.-N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J. et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31, 980–997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 146, eaaz7548 (2020).

    Article  Google Scholar 

  55. LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

  59. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Q. et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Z. et al. Gasdermin E suppresses tumor growth by activating anti-tumor immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  65. Li, Z. et al. Enhancing gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response. Nat. Commun. 13, 6321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johnson, D. C. et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24, 1151–1156 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 47, 607–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu, Y. et al. Ferroptosis in cancer treatment: another way to Rome. Front. Oncol. 10, 571127 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pedrera, L. et al. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28, 1644–1657 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  79. Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10, 2723 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Menon, D. R. et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34, 4448–4459 (2015).

    Article  Google Scholar 

  82. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23, 811–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Farge, T. et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7, 716–735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, J. H. et al. Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep. 14, 2154–2165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng, W. W. et al. CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Rep. 29, 3405–3420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aloia, A. et al. A fatty acid oxidation-dependent metabolic shift regulates the adaptation of BRAF-mutated melanoma to MAPK inhibitors. Clin. Cancer Res. 25, 6852–6867 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mirzayans, R. & Murray, D. Intratumor heterogeneity and therapy resistance: contributions of dormancy, apoptosis reversal (anastasis) and cell fusion to disease recurrence. Int. J. Mol. Sci. 21, 1308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu, Y., So, C., Lam, H.-M., Fung, M.-C. & Tsang, S.-Y. Apoptosis reversal promotes cancer stem cell-like cell formation. Neoplasia 20, 295–303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miles, M. A. & Hawkins, C. J. Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis. 8, e3062 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lovric, M. M. & Hawkins, C. J. TRAIL treatment provokes mutations in surviving cells. Oncogene 29, 5048–5060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Haimovici, A. et al. Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the caspase-activated DNase. Cell Death Dis. 13, 315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ricci, J.-E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Tait, S. W. G. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Remmen, H. V. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    Article  PubMed  Google Scholar 

  101. Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APCMin/+ mice. Am. J. Pathol. 180, 24–31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, P.-L. et al. Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene 32, 1193–1201 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Fischer, U., Jänicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Herbert, K. et al. BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Gene Dev. 33, 310–332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Santos-de-Frutos, K. & Djouder, N. When dormancy fuels tumour relapse. Commun. Biol. 4, 747 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  Google Scholar 

  112. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li, T. & Chen, Z. J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Correia‐Melo, C. et al. Mitochondria are required for pro‐ageing features of the senescent phenotype. EMBO J. 35, 724–742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brokatzky, D. et al. A non‐death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 38, e100907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Han, C. et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Ishimura, N., Isomoto, H., Bronk, S. F. & Gores, G. J. Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G129–G136 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Trauzold, A. et al. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25, 7434–7439 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Li, Z., Xu, X., Bai, L., Chen, W. & Lin, Y. Epidermal growth factor receptor-mediated tissue transglutaminase overexpression couples acquired tumor necrosis factor-related apoptosis-inducing ligand resistance and migration through c-FLIP and MMP-9 proteins in lung cancer cells. J. Biol. Chem. 286, 21164–21172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, X. et al. Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res. 27, 764–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bock, F. J. et al. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat. Commun. 12, 6572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, F. et al. Apoptotic cells activate the ‘phoenix rising’ pathway to promote wound healing and tissue regeneration. Sci. Signal. 3, ra13 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fanfone, D. et al. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. eLife 11, e73150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Davidovich, P., Kearney, C. J. & Martin, S. J. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol. Chem. 395, 1163–1171 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Vafaei, S. et al. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 22, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Angeli, J. P. F., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    Article  Google Scholar 

  134. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Göbel, C. et al. Functional expression cloning identifies COX-2 as a suppressor of antigen-specific cancer immunity. Cell Death Dis. 5, e1568 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wiernicki, B. et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat. Commun. 13, 3676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kerr, J., Wyllie, A. & Currie, A. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cullen, S. P. et al. Fas/CD95-induced chemokines can serve as ‘find-me’ signals for apoptotic cells. Mol. Cell 49, 1034–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat. Rev. Cancer 10, 561–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Eckelman, B. P., Salvesen, G. S. & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Michie, J., Kearney, C. J., Hawkins, E. D., Silke, J. & Oliaro, J. The immuno-modulatory effects of inhibitor of apoptosis protein antagonists in cancer immunotherapy. Cells 9, 207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Jiang, H.-Y. et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol. Cell. Biol. 23, 5651–5663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Deng, J. et al. Translational repression mediates activation of nuclear factor κB by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–10168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abdel-Nour, M. et al. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science 365, eaaw4144 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Püschel, F. et al. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc. Natl Acad. Sci. USA 117, 9932–9941 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gargalovic, P. S. et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc. Natl Acad. Sci. USA 103, 12741–12746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ahmed, A. & Tait, S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol. 14, 2994–3006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Beeck, K. Ode et al. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur. J. Hum. Genet. 19, 965–973 (2011).

    Article  PubMed Central  Google Scholar 

  152. Thompson, D. A. & Weigel, R. J. Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE‐1) in breast carcinomas. Eur. J. Biochem. 252, 169–177 (2017).

    Article  Google Scholar 

  153. Ibrahim, J., Beeck, K. O., de Fransen, E., Peeters, M. & Camp, G. V. The gasdermin E gene has potential as a pan-cancer biomarker, while discriminating between different tumor types. Cancers 11, 1810 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Figarol, S. et al. Farnesyltransferase inhibition overcomes the adaptive resistance to osimertinib in EGFR-mutant NSCLC. Preprint at bioRxiv https://doi.org/10.1101/2022.04.01.486707 (2022).

  155. Vendramin, R. et al. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J. Exp. Med. 218, e20210571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. van der Knaap, M. S. et al. Therapy trial design in vanishing white matter. Neurol. Genet. 8, e657 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wong, Y. et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. eLife 8, e42940 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Hetz, C., Axten, J. M. & Patterson, J. B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol. 15, 764–775 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, L., Chen, X. & Yan, C. Ferroptosis: sn emerging therapeutic opportunity for cancer. Genes Dis. 9, 334–346 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mandal, R., Becker, S. & Strebhardt, K. Targeting CDK9 for anti-cancer therapeutics. Cancers 13, 2181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Phillips, D. C. et al. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia 34, 1646–1657 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Bertagnolli, M. M. et al. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355, 873–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Li, S., Jiang, M., Wang, L. & Yu, S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: recent advancement. Biomed. Pharmacother. 129, 110389 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (R35 CA231620) to D.R.G., the German Research Foundation (DFG; KA 4830/1-1), the Advanced Clinician Scientist Programm UMEA² (Medical Faculty, University of Duisburg-Essen) and the Federal Ministry of Education and Research (BMBF; 01EO2104) to H.K., the Swiss National Science Foundation Postdoc.Mobility Fellowship (P400PB_194393) to S.R., the US National Cancer Institute (T32CA272387) to J.J.P.S. and the American Lebanese Syrian Associated Charities (SJCRH). Figures were created with https://biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Douglas R. Green.

Ethics declarations

Competing interests

D.R.G. consults for Ventus Therapeutics, Sonata Therapeutics and Horizon Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Andrew Aplin, Rene Bernards and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalkavan, H., Rühl, S., Shaw, J.J.P. et al. Non-lethal outcomes of engaging regulated cell death pathways in cancer. Nat Cancer 4, 795–806 (2023). https://doi.org/10.1038/s43018-023-00571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00571-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer