Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination

Abstract

Messenger RNA (mRNA) translation is a tightly controlled process that is integral to gene expression. It features intricate and dynamic interactions of the small and large subunits of the ribosome with mRNAs, aided by multiple auxiliary factors during distinct initiation, elongation and termination phases. The recently developed ribosome profiling method can generate transcriptome-wide surveys of translation and its regulation. Ribosome profiling records the footprints of fully assembled ribosomes along mRNAs and thus primarily interrogates the elongation phase of translation. Importantly, it does not monitor multiple substeps of initiation and termination that involve complexes between the small ribosomal subunit (SSU) and mRNA. Here we describe a related method, termed 'translation complex profile sequencing' (TCP-seq), that is uniquely capable of recording positions of any type of ribosome–mRNA complex transcriptome-wide. It uses fast covalent fixation of translation complexes in live cells, followed by RNase footprinting of translation intermediates and their separation into complexes involving either the full ribosome or the SSU. The footprints derived from each type of complex are then deep-sequenced separately, generating native distribution profiles during the elongation, as well as the initiation and termination stages of translation. We provide the full TCP-seq protocol for Saccharomyces cerevisiae liquid suspension culture, including a data analysis pipeline. The protocol takes 3 weeks to complete by a researcher who is well acquainted with standard molecular biology techniques and who has some experience in ultracentrifugation and the preparation of RNA sequencing (RNA-seq) libraries. Basic Bash and UNIX/Linux command skills are required to use the bioinformatics tools provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the eukaryotic translation cycle of mRNA.
Figure 2: Comparative overview of the TCP-seq and ribosome profiling methods.
Figure 3: Overview of the TCP-seq data browser functions.
Figure 4: Underrepresentation of the SSU footprints in mRNAs with short 5′ UTRs.
Figure 5: Analysis of sucrose gradient UV absorbance profiles.
Figure 6: Flowchart of the complete TCP-seq method.
Figure 7: Fast staining of sucrose density gradients to optimize sedimentation.
Figure 8: Examples of TCP-seq data analysis and visualization.

Similar content being viewed by others

References

  1. Gebauer, F., Preiss, T. & Hentze, M.W. From cis-regulatory elements to complex RNPs and back. Cold Spring Harb. Perspect. Biol. 4, a012245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Hinnebusch, A.G. Translational control 1995-2015: unveiling molecular underpinnings and roles in human biology. RNA 21, 636–639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, B. & Roux, P.P. Translational control by oncogenic signaling pathways. Biochim. Biophys. Acta 1849, 753–765 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Proud, C.G. Mnks, eIF4E phosphorylation and cancer. Biochim. Biophys. Acta 1849, 766–773 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Siddiqui, N. & Sonenberg, N. Signalling to eIF4E in cancer. Biochem. Soc. Trans. 43, 763–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodnina, M.V. & Wintermeyer, W. Recent mechanistic insights into eukaryotic ribosomes. Curr. Opin. Cell Biol. 21, 435–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Hinnebusch, A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Wilson, D.N. & Doudna Cate, J.H. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol. 4, a011536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jackson, R.J., Hellen, C.U. & Pestova, T.V. Termination and post-termination events in eukaryotic translation. Adv. Protein Chem. Struct. Biol. 86, 45–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Hershey, J.W., Sonenberg, N. & Mathews, M.B. Principles of translational control: an overview. Cold Spring Harb. Perspect. Biol. 4, a011528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steitz, T.A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Merrick, W.C. Eukaryotic protein synthesis: still a mystery. J. Biol. Chem. 285, 21197–21201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marintchev, A. Roles of helicases in translation initiation: a mechanistic view. Biochim. Biophys. Acta 1829, 799–809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hinnebusch, A.G., Ivanov, I.P. & Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352, 1413–1416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vilela, C. & McCarthy, J.E. Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region. Mol. Microbiol. 49, 859–867 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hentze, M.W. & Kuhn, L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93, 8175–8182 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Pestova, T.V. & Kolupaeva, V.G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozak, M. A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr. 1, 111–115 (1991).

    CAS  PubMed  Google Scholar 

  22. Kozak, M. Leader length and secondary structure modulate mRNA function under conditions of stress. Mol. Cell Biol. 8, 2737–2744 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lozano, G. & Martinez-Salas, E. Structural insights into viral IRES-dependent translation mechanisms. Curr. Opin. Virol. 12, 113–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Pisarev, A.V., Shirokikh, N.E. & Hellen, C.U. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C. R. Biol. 328, 589–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Komar, A.A., Mazumder, B. & Merrick, W.C. A new framework for understanding IRES-mediated translation. Gene 502, 75–86 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilbert, W.V., Zhou, K., Butler, T.K. & Doudna, J.A. Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317, 1224–1227 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Shirokikh, N.E. & Spirin, A.S. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc. Natl. Acad. Sci. USA 105, 10738–10743 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Kozak, M. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature 308, 241–246 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87, 8301–8305 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meyer, K.D. et al. 5′ UTR m(6)A promotes Cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, A.S., Kranzusch, P.J., Doudna, J.A. & Cate, J.H. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536, 96–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ingolia, N.T. Ribosome footprint profiling of translation throughout the genome. Cell 165, 22–33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brar, G.A. & Weissman, J.S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ingolia, N.T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Jackson, R. & Standart, N. The awesome power of ribosome profiling. RNA 21, 652–654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McGeachy, A.M. & Ingolia, N.T. Starting too soon: upstream reading frames repress downstream translation. EMBO J. 35, 699–700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andreev, D.E. et al. Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. eLife 4, e03971 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Michel, A.M., Ahern, A.M., Donohue, C.A. & Baranov, P.V. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms. Proteomics 15, 2410–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, X., Wan, J. & Qian, S.B. Genome-wide profiling of alternative translation initiation sites. Methods Mol. Biol. 1358, 303–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Vanderperre, B. et al. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One 8, e70698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shah, P., Ding, Y., Niemczyk, M., Kudla, G. & Plotkin, J.B. Rate-limiting steps in yeast protein translation. Cell 153, 1589–1601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baranov, P.V. & Loughran, G. Catch me if you can: trapping scanning ribosomes in their footsteps. Nat. Struct. Mol. Biol. 23, 703–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Archer, S.K., Shirokikh, N.E., Beilharz, T.H. & Preiss, T. Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature 535, 570–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M. & Weissman, J.S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dass, C.M. & Bayley, S.T. A structural study of rat liver ribosomes. J. Cell Biol. 25, 9–22 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marcus, L., Ris, H., Halvorson, H.O., Bretthauer, R.K. & Bock, R.M. Occurrence, isolation, and characterization of polyribosomes in yeast. J. Cell Biol. 34, 505–512 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. King, H.A. & Gerber, A.P. Translatome profiling: methods for genome-scale analysis of mRNA translation. Brief Funct. Genomics 15, 22–31 (2016).

    CAS  PubMed  Google Scholar 

  50. Pospisek, M. & Valasek, L. Polysome profile analysis--yeast. Methods Enzymol. 530, 173–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Masek, T., Valasek, L. & Pospisek, M. Polysome analysis and RNA purification from sucrose gradients. Methods Mol. Biol. 703, 293–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Barondes, S.H. & Nirenberg, M.W. Fate of a synthetic polynucleotide directing cell-free protein synthesis II. Association with ribosomes. Science 138, 813–817 (1962).

    Article  CAS  PubMed  Google Scholar 

  53. Steitz, J.A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224, 957–964 (1969).

    Article  CAS  PubMed  Google Scholar 

  54. Both, G.W., Furuichi, Y., Muthukrishnan, S. & Shatkin, A.J. Ribosome binding to reovirus mRNA in protein synthesis requires 5′ terminal 7-methylguanosine. Cell 6, 185–195 (1975).

    Article  CAS  PubMed  Google Scholar 

  55. Wolin, S.L. & Walter, P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7, 3559–3569 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kozak, M. & Shatkin, A.J. Characterization of ribosome-protected fragments from reovirus messenger RNA. J. Biol. Chem. 251, 4259–4266 (1976).

    CAS  PubMed  Google Scholar 

  57. Kozak, M. & Shatkin, A.J. Sequences and properties of two ribosome binding sites from the small size class of reovirus messenger RNA. J. Biol. Chem. 252, 6895–6908 (1977).

    CAS  PubMed  Google Scholar 

  58. Kolupaeva, V.G., Pestova, T.V. & Hellen, C.U. An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J. Virol. 74, 6242–6250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karmakar, S. et al. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases. Nat. Chem. 7, 752–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Solomon, M.J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 82, 6470–6474 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Viswanathan, R., Hoffman, E.A., Shetty, S.J., Bekiranov, S. & Auble, D.T. Analysis of chromatin binding dynamics using the crosslinking kinetics (CLK) method. Methods 70, 97–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moller, K., Rinke, J., Ross, A., Buddle, G. & Brimacombe, R. The use of formaldehyde in RNA-protein cross-linking studies with ribosomal subunits from Escherichia coli. Eur. J. Biochem. 76, 175–187 (1977).

    Article  CAS  PubMed  Google Scholar 

  63. Sen, N.D., Zhou, F., Ingolia, N.T. & Hinnebusch, A.G. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res. 25, 1196–1205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmiedeberg, L., Skene, P., Deaton, A. & Bird, A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS One 4, e4636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Poorey, K. et al. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342, 369–372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Evers, D.L., Fowler, C.B., Cunningham, B.R., Mason, J.T. & O'Leary, T.J. The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal. J. Mol. Diagn. 13, 282–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Furey, T.S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park, P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Archer, S.K., Shirokikh, N.E., Hallwirth, C.V., Beilharz, T.H. & Preiss, T. Probing the closed-loop model of mRNA translation in living cells. RNA Biol. 12, 248–254 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Strunk, B.S., Novak, M.N., Young, C.L. & Karbstein, K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valasek, L., Szamecz, B., Hinnebusch, A.G. & Nielsen, K.H. In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzymol. 429, 163–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Weber, L.A., Hickey, E.D. & Baglioni, C. Influence of potassium salt concentration and temperature on inhibition of mRNA translation by 7-methylguanosine5′-monophosphate. J. Biol. Chem. 253, 178–183 (1978).

    CAS  PubMed  Google Scholar 

  73. Tulin, E.E., Tsutsumi, K. & Ejiri, S. Continuously coupled transcription-translation system for the production of rice cytoplasmic aldolase. Biotechnol. Bioeng. 45, 511–516 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Louie, M.K., Francisco, J.S., Verdicchio, M., Klippenstein, S.J. & Sinha, A. Dimethylamine addition to formaldehyde catalyzed by a single water molecule: a facile route for atmospheric carbinolamine formation and potential promoter of aerosol growth. J. Phys. Chem. A 120, 1358–1368 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Ugye, J.T., Uzairu, A., Idris, S.O. & Kwanashie, H.O. Temperature effects on the rate of reaction of plasma albumin with formaldehyde in water solution and ethanol-water-mixtures. Chem. J. 03, 128–132 (2013).

    CAS  Google Scholar 

  76. Archer, S.K., Shirokikh, N.E. & Preiss, T. Probe-Directed Degradation (PDD) for flexible removal of unwanted cDNA sequences from RNA-Seq libraries. Curr. Protoc. Hum. Genet. 85, Unit 11.15 (2015).

    Google Scholar 

  77. Anisimova, V.E., Barsova, E.V., Bogdanova, E.A., Lukyanov, S.A. & Shcheglov, A.S. Thermolabile duplex-specific nuclease. Biotechnol. Lett. 31, 251–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Archer, S.K., Shirokikh, N.E. & Preiss, T. Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage. BMC Genom. 15, 401 (2014).

    Article  CAS  Google Scholar 

  79. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Dever, T.E., Kinzy, T.G. & Pavitt, G.D. Mechanism and regulation of protein synthesis in Saccharomyces cerevisiae. Genetics 203, 65–107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Altmann, M. & Linder, P. Power of yeast for analysis of eukaryotic translation initiation. J. Biol. Chem. 285, 31907–31912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lindqvist, L. & Pelletier, J. Inhibitors of translation initiation as cancer therapeutics. Future Med. Chem. 1, 1709–1722 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Popa, A., Lebrigand, K., Barbry, P. & Waldmann, R. Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells. BMC Genom. 17, 52 (2016).

    Article  CAS  Google Scholar 

  85. Lareau, L.F., Hite, D.H., Hogan, G.J. & Brown, P.O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 3, e01257 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao, X. et al. Quantitative profiling of initiating ribosomes in vivo. Nat. Methods 12, 147–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Bartholomaus, A., Del Campo, C. & Ignatova, Z. Mapping the non-standardized biases of ribosome profiling. Biol. Chem. 397, 23–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Gerashchenko, M.V. & Gladyshev, V.N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weinberg, D.E. et al. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep. 14, 1787–1799 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hussmann, J.A., Patchett, S., Johnson, A., Sawyer, S. & Press, W.H. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet. 11, e1005732 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamamoto, H. et al. Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat. Struct. Mol. Biol. 21, 721–727 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Weisser, M., Voigts-Hoffmann, F., Rabl, J., Leibundgut, M. & Ban, N. The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nat. Struct. Mol. Biol. 20, 1015–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Muhs, M. et al. Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Mol. Cell 57, 422–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. des Georges, A. et al. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nucleic Acids Res. 42, 3409–3418 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Lomakin, I.B. & Steitz, T.A. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500, 307–311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koutmou, K.S. et al. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 4, e05534 (2015).

    Article  PubMed Central  Google Scholar 

  98. Parenteau, J. et al. Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol. Biol. Cell 19, 1932–1941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kanitz, A. et al. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol. 16, 150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martinez-Nunez, R.T. & Sanford, J.R. Studying isoform-specific mRNA recruitment to polyribosomes with Frac-seq. Methods Mol. Biol. 1358, 99–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, H., McManus, J. & Kingsford, C. Isoform-level ribosome occupancy estimation guided by transcript abundance with Ribomap. Bioinformatics 32, 1880–1882 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Spealman, P., Wang, H., May, G., Kingsford, C. & McManus, C.J. Exploring ribosome positioning on translating transcripts with ribosome profiling. Methods Mol. Biol. 1358, 71–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Ji, Z., Song, R., Huang, H., Regev, A. & Struhl, K. Transcriptome-scale RNase-footprinting of RNA-protein complexes. Nat. Biotechnol. 34, 410–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berthelot, K., Muldoon, M., Rajkowitsch, L., Hughes, J. & McCarthy, J.E.G. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol. Microbiol. 51, 987–1001 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Karpinets, T.V., Greenwood, D.J., Sams, C.E. & Ammons, J.T. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol. 4, 30 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xiao, Z., Zou, Q., Liu, Y. & Yang, X. Genome-wide assessment of differential translations with ribosome profiling data. Nat. Commun. 7, 11194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Young, D.J., Guydosh, N.R., Zhang, F., Hinnebusch, A.G. & Green, R. Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs in vivo. Cell 162, 872–884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Collins, K. & Nilsen, T.W. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology. RNA 19, 1017–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mohr, S. et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19, 958–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nottingham, R.M. et al. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA 22, 597–613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qin, Y. et al. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases. RNA 22, 111–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chung, B.Y. et al. The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA 21, 1731–1745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yi, H. et al. Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res. 39, e140 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bogdanova, E.A., Shagin, D.A. & Lukyanov, S.A. Normalization of full-length enriched cDNA. Mol. Biosyst. 4, 205–212 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Zhulidov, P.A. et al. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res. 32, e37 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, Z., Hesselberth, J.R. & Fields, S. Genome-wide identification of spliced introns using a tiling microarray. Genome Res. 17, 503–509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an ARC Discovery Grant (DP1300101928) and an NHMRC Senior Research Fellowship (514904) awarded to T.P. N.E.S. was supported by a Go8 European Fellowship. We acknowledge technical support from the Australian Cancer Research Foundation Biomolecular Resource Facility (John Curtin School of Medical Research, Australian National University) and S. Androulakis at the Monash Bioinformatics Platform.

Author information

Authors and Affiliations

Authors

Contributions

N.E.S., S.K.A. and T.P. developed the protocol; N.E.S. and S.K.A. performed the biochemical experiments; S.K.A. and D.P. developed the bioinformatics analysis framework and analyzed the data; and N.E.S., S.K.A., T.H.B. and T.P. discussed and interpreted results. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Thomas Preiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Library construction approach used in TCP-seq.

Overview of the library construction steps used in TCP-seq, starting from the de-blocked RNA fragments isolated from the SSU, complete ribosome or total translated RNA fractions (Step 73), and ending with the amplified, size-selected strand-specific library (Step 128).

Supplementary Figure 2 Schematic of algorithm for inferring footprint lengths from alignments.

Representative alignments of reads (top sequences) to a reference (bottom sequences) are given and the nucleotides or gaps counted towards the footprint lengths is indicated in red. To the right of each alignment is its corresponding CIGAR representation, output by the aligner. 3′ poly(A) tracts that were mismatched with the reference (but not trimmed away in earlier steps due to an erroneous internal G or T base-call) were trimmed in this step also.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1 and 2, and Supplementary Table 1. (PDF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokikh, N., Archer, S., Beilharz, T. et al. Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nat Protoc 12, 697–731 (2017). https://doi.org/10.1038/nprot.2016.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.189

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing